論文の概要: Constrained Auto-Regressive Decoding Constrains Generative Retrieval
- arxiv url: http://arxiv.org/abs/2504.09935v1
- Date: Mon, 14 Apr 2025 06:54:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 16:48:33.109002
- Title: Constrained Auto-Regressive Decoding Constrains Generative Retrieval
- Title(参考訳): 制約付き自己回帰復号法
- Authors: Shiguang Wu, Zhaochun Ren, Xin Xin, Jiyuan Yang, Mengqi Zhang, Zhumin Chen, Maarten de Rijke, Pengjie Ren,
- Abstract要約: ジェネレーティブ検索は、従来の検索インデックスデータ構造を1つの大規模ニューラルネットワークに置き換えようとしている。
本稿では,制約とビームサーチという2つの本質的な視点から,制約付き自己回帰生成の固有の制約について検討する。
- 参考スコア(独自算出の注目度): 71.71161220261655
- License:
- Abstract: Generative retrieval seeks to replace traditional search index data structures with a single large-scale neural network, offering the potential for improved efficiency and seamless integration with generative large language models. As an end-to-end paradigm, generative retrieval adopts a learned differentiable search index to conduct retrieval by directly generating document identifiers through corpus-specific constrained decoding. The generalization capabilities of generative retrieval on out-of-distribution corpora have gathered significant attention. In this paper, we examine the inherent limitations of constrained auto-regressive generation from two essential perspectives: constraints and beam search. We begin with the Bayes-optimal setting where the generative retrieval model exactly captures the underlying relevance distribution of all possible documents. Then we apply the model to specific corpora by simply adding corpus-specific constraints. Our main findings are two-fold: (i) For the effect of constraints, we derive a lower bound of the error, in terms of the KL divergence between the ground-truth and the model-predicted step-wise marginal distributions. (ii) For the beam search algorithm used during generation, we reveal that the usage of marginal distributions may not be an ideal approach. This paper aims to improve our theoretical understanding of the generalization capabilities of the auto-regressive decoding retrieval paradigm, laying a foundation for its limitations and inspiring future advancements toward more robust and generalizable generative retrieval.
- Abstract(参考訳): ジェネレーティブ検索は、従来の検索インデックスデータ構造を1つの大規模ニューラルネットワークに置き換えることを目指している。
エンドツーエンドのパラダイムとして、生成検索は学習可能な検索インデックスを採用し、コーパス固有の制約付き復号により文書識別子を直接生成することで検索を行う。
アウト・オブ・ディストリビューション・コーパスにおける生成的検索の一般化能力に大きな注目を集めている。
本稿では,制約とビームサーチという2つの本質的な視点から,制約付き自己回帰生成の固有の制約について検討する。
まずベイズ最適設定から始め、生成的検索モデルがすべての可能なドキュメントの関連性分布を正確に把握する。
次に、コーパス固有の制約を単に追加することで、そのモデルを特定のコーパスに適用する。
主な発見は2つあります。
(i) 制約の効果については,KLの基底構造とモデル予測のステップワイド辺分布とのばらつきの観点から,誤差の低い境界を導出する。
(II) 生成時に用いられるビーム探索アルゴリズムでは, 限界分布の利用は理想的なアプローチではない。
本稿では,自己回帰復号化検索パラダイムの一般化能力に関する理論的理解の向上をめざし,その限界の基盤を築き,より堅牢で一般化可能な生成検索に向けた今後の発展を促すことを目的とする。
関連論文リスト
- RetroLLM: Empowering Large Language Models to Retrieve Fine-grained Evidence within Generation [21.764973680014368]
RetroLLMは、検索と生成を単一の凝集プロセスに統合する統合フレームワークである。
制約付きエビデンス生成の過程での偽プルーニングを軽減するために,階層的FM-Index制約を導入する。
5つのオープンドメインQAデータセットの実験では、ドメイン内タスクとドメイン外タスクの両方にわたって、RetroLLMの優れたパフォーマンスが示されている。
論文 参考訳(メタデータ) (2024-12-16T16:03:25Z) - Learning to Rank in Generative Retrieval [62.91492903161522]
生成的検索は、検索対象として関連する通路の識別子文字列を生成することを目的としている。
我々はLTRGRと呼ばれる生成検索のための学習 torankフレームワークを提案する。
このフレームワークは、現在の生成的検索システムを強化するために、追加の学習からランクまでのトレーニングフェーズのみを必要とする。
論文 参考訳(メタデータ) (2023-06-27T05:48:14Z) - How Does Generative Retrieval Scale to Millions of Passages? [68.98628807288972]
各種コーパス尺度における生成的検索手法の実証的研究を行った。
我々は8.8Mパスのコーパスで数百万のパスに生成検索をスケールし、モデルサイズを最大11Bパラメータまで評価する。
生成的検索は、小さなコーパス上の最先端のデュアルエンコーダと競合するが、数百万のパスへのスケーリングは依然として重要で未解決の課題である。
論文 参考訳(メタデータ) (2023-05-19T17:33:38Z) - CorpusBrain: Pre-train a Generative Retrieval Model for
Knowledge-Intensive Language Tasks [62.22920673080208]
単一ステップ生成モデルは、検索プロセスを劇的に単純化し、エンドツーエンドで最適化することができる。
我々は、事前学習された生成検索モデルをCorpsBrainと名付け、コーパスに関する全ての情報が、追加のインデックスを構築することなく、そのパラメータにエンコードされる。
論文 参考訳(メタデータ) (2022-08-16T10:22:49Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
カラムワイズモデルを適応的かつ自動的に構成するための一般化反復計算フレームワークを提案する。
既製の学習者,シミュレータ,インターフェースを備えた具体的な実装を提供する。
論文 参考訳(メタデータ) (2022-06-15T19:10:35Z) - Autoregressive Search Engines: Generating Substrings as Document
Identifiers [53.0729058170278]
自動回帰言語モデルは、回答を生成するデファクト標準として現れています。
これまでの研究は、探索空間を階層構造に分割する方法を探究してきた。
本研究では,検索空間の任意の構造を強制しない代替として,経路内のすべてのngramを識別子として使用することを提案する。
論文 参考訳(メタデータ) (2022-04-22T10:45:01Z) - Interpretable Research Replication Prediction via Variational Contextual
Consistency Sentence Masking [14.50690911709558]
研究レプリケーション予測(Research Replication Prediction、RRP)は、公表された研究結果が複製可能かどうかを予測するタスクである。
本研究では,キー文を自動的に抽出するVCCSM法を提案する。
欧州人権条約 (ECHR) のデータセットとともに, RRP に関する実験の結果, VCCSM は長い文書分類作業において, モデル解釈可能性を向上させることができることを示した。
論文 参考訳(メタデータ) (2022-03-28T03:27:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。