GenTe: Generative Real-world Terrains for General Legged Robot Locomotion Control
- URL: http://arxiv.org/abs/2504.09997v1
- Date: Mon, 14 Apr 2025 09:01:44 GMT
- Title: GenTe: Generative Real-world Terrains for General Legged Robot Locomotion Control
- Authors: Hanwen Wan, Mengkang Li, Donghao Wu, Yebin Zhong, Yixuan Deng, Zhenglong Sun, Xiaoqiang Ji,
- Abstract summary: GenTe is a framework for generating physically realistic and adaptable terrains to train generalizable locomotion policies.<n>By leveraging function-calling techniques and reasoning capabilities of Vision-Language Models, GenTe generates complex, contextually relevant terrains.<n>Experiments demonstrate improved generalization and robustness in bipedal robot locomotion.
- Score: 3.5594486521440323
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Developing bipedal robots capable of traversing diverse real-world terrains presents a fundamental robotics challenge, as existing methods using predefined height maps and static environments fail to address the complexity of unstructured landscapes. To bridge this gap, we propose GenTe, a framework for generating physically realistic and adaptable terrains to train generalizable locomotion policies. GenTe constructs an atomic terrain library that includes both geometric and physical terrains, enabling curriculum training for reinforcement learning-based locomotion policies. By leveraging function-calling techniques and reasoning capabilities of Vision-Language Models (VLMs), GenTe generates complex, contextually relevant terrains from textual and graphical inputs. The framework introduces realistic force modeling for terrain interactions, capturing effects such as soil sinkage and hydrodynamic resistance. To the best of our knowledge, GenTe is the first framework that systemically generates simulation environments for legged robot locomotion control. Additionally, we introduce a benchmark of 100 generated terrains. Experiments demonstrate improved generalization and robustness in bipedal robot locomotion.
Related papers
- Learning Humanoid Standing-up Control across Diverse Postures [27.79222176982376]
Standing-up control is crucial for humanoid robots, with the potential for integration into current locomotion and loco-manipulation systems.
We present HoST (Humanoid Standing-up Control), a reinforcement learning framework that learns standing-up control from scratch.
Our experimental results demonstrate that the controllers achieve smooth, stable, and robust standing-up motions across a wide range of laboratory and outdoor environments.
arXiv Detail & Related papers (2025-02-12T13:10:09Z) - Watch Your STEPP: Semantic Traversability Estimation using Pose Projected Features [4.392942391043664]
We propose a method for estimating terrain traversability by learning from demonstrations of human walking.
Our approach leverages dense, pixel-wise feature embeddings generated using the DINOv2 vision Transformer model.
By minimizing loss, the network distinguishes between familiar terrain with a low reconstruction error and unfamiliar or hazardous terrain with a higher reconstruction error.
arXiv Detail & Related papers (2025-01-29T11:53:58Z) - Robotic World Model: A Neural Network Simulator for Robust Policy Optimization in Robotics [50.191655141020505]
This work advances model-based reinforcement learning by addressing the challenges of long-horizon prediction, error accumulation, and sim-to-real transfer.
By providing a scalable and robust framework, the introduced methods pave the way for adaptive and efficient robotic systems in real-world applications.
arXiv Detail & Related papers (2025-01-17T10:39:09Z) - GRAPPA: Generalizing and Adapting Robot Policies via Online Agentic Guidance [15.774237279917594]
We propose an agentic framework for robot self-guidance and self-improvement.<n>Our framework iteratively grounds a base robot policy to relevant objects in the environment.<n>We demonstrate that our approach can effectively guide manipulation policies to achieve significantly higher success rates.
arXiv Detail & Related papers (2024-10-09T02:00:37Z) - Learning Humanoid Locomotion over Challenging Terrain [84.35038297708485]
We present a learning-based approach for blind humanoid locomotion capable of traversing challenging natural and man-made terrains.
Our model is first pre-trained on a dataset of flat-ground trajectories with sequence modeling, and then fine-tuned on uneven terrain using reinforcement learning.
We evaluate our model on a real humanoid robot across a variety of terrains, including rough, deformable, and sloped surfaces.
arXiv Detail & Related papers (2024-10-04T17:57:09Z) - Advancing Humanoid Locomotion: Mastering Challenging Terrains with Denoising World Model Learning [11.648198428063415]
We introduce Denoising World Model Learning (DWL), an end-to-end reinforcement learning framework for humanoid locomotion control.
DWL demonstrates the world's first humanoid robot to master real-world challenging terrains such as snowy and inclined land in the wild, up and down stairs, and extremely uneven terrains.
arXiv Detail & Related papers (2024-08-26T17:59:03Z) - RoboScript: Code Generation for Free-Form Manipulation Tasks across Real
and Simulation [77.41969287400977]
This paper presents textbfRobotScript, a platform for a deployable robot manipulation pipeline powered by code generation.
We also present a benchmark for a code generation benchmark for robot manipulation tasks in free-form natural language.
We demonstrate the adaptability of our code generation framework across multiple robot embodiments, including the Franka and UR5 robot arms.
arXiv Detail & Related papers (2024-02-22T15:12:00Z) - Transferring Foundation Models for Generalizable Robotic Manipulation [82.12754319808197]
We propose a novel paradigm that effectively leverages language-reasoning segmentation mask generated by internet-scale foundation models.<n>Our approach can effectively and robustly perceive object pose and enable sample-efficient generalization learning.<n>Demos can be found in our submitted video, and more comprehensive ones can be found in link1 or link2.
arXiv Detail & Related papers (2023-06-09T07:22:12Z) - Real-World Humanoid Locomotion with Reinforcement Learning [92.85934954371099]
We present a fully learning-based approach for real-world humanoid locomotion.
Our controller can walk over various outdoor terrains, is robust to external disturbances, and can adapt in context.
arXiv Detail & Related papers (2023-03-06T18:59:09Z) - Generating a Terrain-Robustness Benchmark for Legged Locomotion: A
Prototype via Terrain Authoring and Active Learning [6.254631755450703]
We prototype the generation of a terrain dataset via terrain authoring and active learning.
Hopefully, the generated dataset can make a terrain-robustness benchmark for legged locomotion.
arXiv Detail & Related papers (2022-08-16T11:42:28Z) - An Adaptable Approach to Learn Realistic Legged Locomotion without
Examples [38.81854337592694]
This work proposes a generic approach for ensuring realism in locomotion by guiding the learning process with the spring-loaded inverted pendulum model as a reference.
We present experimental results showing that even in a model-free setup, the learned policies can generate realistic and energy-efficient locomotion gaits for a bipedal and a quadrupedal robot.
arXiv Detail & Related papers (2021-10-28T10:14:47Z) - Learning Quadrupedal Locomotion over Challenging Terrain [68.51539602703662]
Legged locomotion can dramatically expand the operational domains of robotics.
Conventional controllers for legged locomotion are based on elaborate state machines that explicitly trigger the execution of motion primitives and reflexes.
Here we present a radically robust controller for legged locomotion in challenging natural environments.
arXiv Detail & Related papers (2020-10-21T19:11:20Z) - Learning to Move with Affordance Maps [57.198806691838364]
The ability to autonomously explore and navigate a physical space is a fundamental requirement for virtually any mobile autonomous agent.
Traditional SLAM-based approaches for exploration and navigation largely focus on leveraging scene geometry.
We show that learned affordance maps can be used to augment traditional approaches for both exploration and navigation, providing significant improvements in performance.
arXiv Detail & Related papers (2020-01-08T04:05:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.