The Mirage of Performance Gains: Why Contrastive Decoding Fails to Address Multimodal Hallucination
- URL: http://arxiv.org/abs/2504.10020v2
- Date: Fri, 18 Apr 2025 11:30:15 GMT
- Title: The Mirage of Performance Gains: Why Contrastive Decoding Fails to Address Multimodal Hallucination
- Authors: Hao Yin, Guangzong Si, Zilei Wang,
- Abstract summary: Contrastive decoding strategies are widely used to reduce hallucinations in multimodal large language models (MLLMs)<n>This paper demonstrates that such approaches fail to effectively mitigate the hallucination problem.
- Score: 28.24397677839652
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Contrastive decoding strategies are widely used to reduce hallucinations in multimodal large language models (MLLMs). These methods work by constructing contrastive samples to induce hallucinations and then suppressing them in the output distribution. However, this paper demonstrates that such approaches fail to effectively mitigate the hallucination problem. The performance improvements observed on POPE Benchmark are largely driven by two misleading factors: (1) crude, unidirectional adjustments to the model's output distribution and (2) the adaptive plausibility constraint, which reduces the sampling strategy to greedy search. To further illustrate these issues, we introduce a series of spurious improvement methods and evaluate their performance against contrastive decoding techniques. Experimental results reveal that the observed performance gains in contrastive decoding are entirely unrelated to its intended goal of mitigating hallucinations. Our findings challenge common assumptions about the effectiveness of contrastive decoding strategies and pave the way for developing genuinely effective solutions to hallucinations in MLLMs.
Related papers
- Efficient Contrastive Decoding with Probabilistic Hallucination Detection - Mitigating Hallucinations in Large Vision Language Models - [1.2499537119440245]
Efficient Contrastive Decoding (ECD) is a simple method that leverages probabilistic hallucination detection to shift the output distribution towards contextually accurate answers at inference time.
Our experiments show that ECD effectively mitigates hallucinations, outperforming state-of-the-art methods with respect to performance on LVLM benchmarks and computation time.
arXiv Detail & Related papers (2025-04-16T14:50:25Z) - ClearSight: Visual Signal Enhancement for Object Hallucination Mitigation in Multimodal Large language Models [28.24397677839652]
Contrastive decoding strategies are widely used to mitigate object hallucinations in multimodal large language models (MLLMs)<n>We propose Visual Amplification Fusion (VAF), a plug-and-play technique that enhances attention to visual signals within the model's middle layers.<n>VAF significantly reduces hallucinations across various MLLMs without affecting inference speed, while maintaining coherence and accuracy in generated outputs.
arXiv Detail & Related papers (2025-03-17T12:30:40Z) - Attention Reallocation: Towards Zero-cost and Controllable Hallucination Mitigation of MLLMs [62.9348974370985]
We propose attention reallocation (AttnReal) to mitigate hallucinations with nearly zero extra cost.<n>Our approach is motivated by the key observations that, MLLM's unreasonable attention distribution causes features to be dominated by historical output tokens.<n>Based on the observations, AttnReal recycles excessive attention from output tokens and reallocates it to visual tokens, which reduces MLLM's reliance on language priors.
arXiv Detail & Related papers (2025-03-11T11:52:37Z) - Self-Correcting Decoding with Generative Feedback for Mitigating Hallucinations in Large Vision-Language Models [66.71616369573715]
Large Vision-Language Models (LVLMs) are prone to generating hallucinatory text responses that do not align with the given visual input.
We introduce self-correcting Decoding with Generative Feedback (DeGF), a novel training-free algorithm that incorporates feedback from text-to-image generative models into the decoding process.
arXiv Detail & Related papers (2025-02-10T03:43:55Z) - Mitigating Hallucination for Large Vision Language Model by Inter-Modality Correlation Calibration Decoding [66.06337890279839]
Large vision-language models (LVLMs) have shown remarkable capabilities in visual-language understanding for downstream multi-modal tasks.
LVLMs still suffer from generating hallucinations in complex generation tasks, leading to inconsistencies between visual inputs and generated content.
We propose an Inter-Modality Correlation Decoding (IMCCD) method to mitigate hallucinations in LVLMs in a training-free manner.
arXiv Detail & Related papers (2025-01-03T17:56:28Z) - VaLiD: Mitigating the Hallucination of Large Vision Language Models by Visual Layer Fusion Contrastive Decoding [38.23310445372371]
Large Vision-Language Models (LVLMs) have demonstrated remarkable capabilities in multimodal task reasoning.<n>They often generate responses that appear plausible yet do not accurately reflect the visual content, a phenomenon known as hallucination.<n>Recent approaches have introduced training-free methods to mitigate hallucinations by adjusting the decoding strategy during the inference stage.<n>We propose a novel hallucination-mitigation method from the visual encoding perspective: textbfVisutextbfal textbfLayer Fustextbfion Contrastive textbfD
arXiv Detail & Related papers (2024-11-24T13:42:02Z) - CODE: Contrasting Self-generated Description to Combat Hallucination in Large Multi-modal Models [51.70129969269271]
We introduce a novel contrastive-based decoding method, COuntering DEscription Contrastive Decoding (CODE)
Our method significantly reduces hallucinations and improves cross-modal consistency across various benchmarks and cutting-edge LMMs.
arXiv Detail & Related papers (2024-06-04T03:04:21Z) - Alleviating Hallucinations in Large Vision-Language Models through Hallucination-Induced Optimization [123.54980913741828]
Large Visual Language Models (LVLMs) have demonstrated exceptional abilities in understanding multimodal data.<n>They invariably suffer from hallucinations, leading to a disconnect between the generated text and the corresponding images.<n>Almost all current visual contrastive decoding methods attempt to mitigate these hallucinations by introducing visual uncertainty information.<n>However, they struggle to precisely induce the hallucinatory tokens, which severely limits their effectiveness in mitigating hallucinations.
arXiv Detail & Related papers (2024-05-24T08:46:31Z) - Debiasing Multimodal Large Language Models [61.6896704217147]
Large Vision-Language Models (LVLMs) have become indispensable tools in computer vision and natural language processing.
Our investigation reveals a noteworthy bias in the generated content, where the output is primarily influenced by the underlying Large Language Models (LLMs) prior to the input image.
To rectify these biases and redirect the model's focus toward vision information, we introduce two simple, training-free strategies.
arXiv Detail & Related papers (2024-03-08T12:35:07Z) - IBD: Alleviating Hallucinations in Large Vision-Language Models via
Image-Biased Decoding [37.16880672402059]
Over-reliance on linguistic priors has been identified as a key factor leading to hallucinations.
We propose to alleviate this problem by introducing a novel image-biased decoding technique.
Our method derives the next-token probability distribution by contrasting predictions from a conventional LVLM with those of an image-biased LVLM.
arXiv Detail & Related papers (2024-02-28T16:57:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.