論文の概要: Sequence models for by-trial decoding of cognitive strategies from neural data
- arxiv url: http://arxiv.org/abs/2504.10028v1
- Date: Mon, 14 Apr 2025 09:33:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 16:50:02.174020
- Title: Sequence models for by-trial decoding of cognitive strategies from neural data
- Title(参考訳): ニューラルデータからの認知戦略のバイデンシャルデコードのためのシーケンスモデル
- Authors: Rick den Otter, Gabriel Weindel, Sjoerd Stuit, Leendert van Maanen,
- Abstract要約: 本稿では,脳波データから認知戦略を復号化するための新しい機械学習手法を提案する。
試行レベルでの認知操作をうまくモデル化することにより、意思決定戦略における動的変動の実証的証拠を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Understanding the sequence of cognitive operations that underlie decision-making is a fundamental challenge in cognitive neuroscience. Traditional approaches often rely on group-level statistics, which obscure trial-by-trial variations in cognitive strategies. In this study, we introduce a novel machine learning method that combines Hidden Multivariate Pattern analysis with a Structured State Space Sequence model to decode cognitive strategies from electroencephalography data at the trial level. We apply this method to a decision-making task, where participants were instructed to prioritize either speed or accuracy in their responses. Our results reveal an additional cognitive operation, labeled Confirmation, which seems to occur predominantly in the accuracy condition but also frequently in the speed condition. The modeled probability that this operation occurs is associated with higher probability of responding correctly as well as changes of mind, as indexed by electromyography data. By successfully modeling cognitive operations at the trial level, we provide empirical evidence for dynamic variability in decision strategies, challenging the assumption of homogeneous cognitive processes within experimental conditions. Our approach shows the potential of sequence modeling in cognitive neuroscience to capture trial-level variability that is obscured by aggregate analyses. The introduced method offers a new way to detect and understand cognitive strategies in a data-driven manner, with implications for both theoretical research and practical applications in many fields.
- Abstract(参考訳): 意思決定の根底にある認知行動の順序を理解することは、認知神経科学の基本的な課題である。
従来のアプローチは、認知戦略におけるトライアル・バイ・トライアルのばらつきがあいまいなグループレベルの統計に依存することが多い。
本研究では,隠れ多変量パターン解析と構造化状態空間系列モデルを組み合わせて,脳波データから認知戦略を復号化するための機械学習手法を提案する。
本手法を意思決定タスクに適用し,参加者に対して,反応の速度と精度を優先するように指示した。
以上の結果より,Confirmationとラベル付けされた追加の認知操作が,主に精度条件で発生するが,速度条件でも頻繁に発生することが示唆された。
この手術が起こる確率は、心電図データで示されるように、正しい反応の確率と心の変化に関連付けられている。
実験レベルでの認知操作をうまくモデル化することにより、意思決定戦略における動的変動の実証的証拠を提供し、実験条件下での同質認知過程の仮定に挑戦する。
本稿では,認知神経科学におけるシーケンスモデリングの可能性を示す。
提案手法は,多くの分野における理論的研究と実践的応用の両方に影響を及ぼすとともに,認知戦略をデータ駆動方式で検出し,理解する新しい方法を提供する。
関連論文リスト
- Deep Insights into Cognitive Decline: A Survey of Leveraging Non-Intrusive Modalities with Deep Learning Techniques [0.5172964916120903]
本研究は、ディープラーニング技術を用いて認知低下推定作業を自動化する最も関連性の高い手法についてレビューする。
トランスフォーマーアーキテクチャやファンデーションモデルのような最先端のアプローチを含む、各モダリティと方法論の重要な特徴と利点について論じる。
ほとんどの場合、テキストのモダリティは最良の結果を得ることができ、認知の低下を検出するのに最も関係がある。
論文 参考訳(メタデータ) (2024-10-24T17:59:21Z) - Latent Variable Sequence Identification for Cognitive Models with Neural Network Estimators [7.7227297059345466]
本稿では,ニューラルベイズ推定を拡張して,実験データと対象変数空間との直接マッピングを学習する手法を提案する。
我々の研究は、リカレントニューラルネットワークとシミュレーションベースの推論を組み合わせることで、潜在変数配列を特定することで、研究者がより広範な認知モデルにアクセスできるようになることを強調している。
論文 参考訳(メタデータ) (2024-06-20T21:13:39Z) - Deep Latent Variable Modeling of Physiological Signals [0.8702432681310401]
潜時変動モデルを用いた生理モニタリングに関する高次元問題について検討する。
まず、光学的に得られた信号を入力として、心の電気波形を生成するための新しい状態空間モデルを提案する。
次に,確率的グラフィカルモデルの強みと深い敵対学習を組み合わせた脳信号モデリング手法を提案する。
第3に,生理的尺度と行動の合同モデリングのための枠組みを提案する。
論文 参考訳(メタデータ) (2024-05-29T17:07:33Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - Unified Uncertainty Estimation for Cognitive Diagnosis Models [70.46998436898205]
本稿では,幅広い認知診断モデルに対する統一的不確実性推定手法を提案する。
診断パラメータの不確かさをデータ・アスペクトとモデル・アスペクトに分解する。
本手法は有効であり,認知診断の不確実性に関する有用な知見を提供することができる。
論文 参考訳(メタデータ) (2024-03-09T13:48:20Z) - Interpretable Imitation Learning with Dynamic Causal Relations [65.18456572421702]
得られた知識を有向非巡回因果グラフの形で公開することを提案する。
また、この因果発見プロセスを状態依存的に設計し、潜在因果グラフのダイナミクスをモデル化する。
提案するフレームワークは,動的因果探索モジュール,因果符号化モジュール,予測モジュールの3つの部分から構成され,エンドツーエンドで訓練される。
論文 参考訳(メタデータ) (2023-09-30T20:59:42Z) - Decoding Neural Activity to Assess Individual Latent State in
Ecologically Valid Contexts [1.1059590443280727]
2つの高度に制御された実験室のパラダイムからのデータを用いて、2つの異なるドメイン一般化モデルを訓練する。
我々は、下層の潜伏状態と関連する神経活動パターンを推定する。
論文 参考訳(メタデータ) (2023-04-18T15:15:00Z) - Modeling cognitive load as a self-supervised brain rate with
electroencephalography and deep learning [2.741266294612776]
本研究では,脳波データからメンタルワークロードをモデリングするための,新たな自己教師型手法を提案する。
脳波データからスペクトル地形図を空間的に保存して脳速度変数に適合させることができる畳み込みリカレントニューラルネットワークである。
学習した認知活性化の準安定なブロックの存在は、それらは畳み込みによって誘導され、時間とともに互いに依存していないように見えるため、脳反応の非定常的性質と直感的に一致している。
論文 参考訳(メタデータ) (2022-09-21T07:44:21Z) - Nonparametric Estimation of Heterogeneous Treatment Effects: From Theory
to Learning Algorithms [91.3755431537592]
プラグイン推定と擬似出力回帰に依存する4つの幅広いメタ学習戦略を解析する。
この理論的推論を用いて、アルゴリズム設計の原則を導出し、分析を実践に翻訳する方法について強調する。
論文 参考訳(メタデータ) (2021-01-26T17:11:40Z) - An Optimal Control Approach to Learning in SIDARTHE Epidemic model [67.22168759751541]
本研究では,疫病データから動的コンパートメンタルモデルの時間変化パラメータを学習するための一般的な手法を提案する。
我々はイタリアとフランスの疫病の進化を予報する。
論文 参考訳(メタデータ) (2020-10-28T10:58:59Z) - Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic
Programmed Deep Kernels [93.58854458951431]
本稿では、神経変性疾患のパーソナライズされた予測モデリングのための、確率的プログラムによる深層カーネル学習手法を提案する。
我々の分析は、ニューラルネットワークとシンボリック機械学習のアプローチのスペクトルを考慮する。
我々は、アルツハイマー病の予測問題について評価を行い、深層学習を超越した結果を得た。
論文 参考訳(メタデータ) (2020-09-16T15:16:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。