論文の概要: Deep Insights into Cognitive Decline: A Survey of Leveraging Non-Intrusive Modalities with Deep Learning Techniques
- arxiv url: http://arxiv.org/abs/2410.18972v1
- Date: Thu, 24 Oct 2024 17:59:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-25 12:51:03.541210
- Title: Deep Insights into Cognitive Decline: A Survey of Leveraging Non-Intrusive Modalities with Deep Learning Techniques
- Title(参考訳): 認知の衰退への深い洞察: ディープラーニング技術による非侵入的モダリティの活用に関する調査
- Authors: David Ortiz-Perez, Manuel Benavent-Lledo, Jose Garcia-Rodriguez, David Tomás, M. Flores Vizcaya-Moreno,
- Abstract要約: 本研究は、ディープラーニング技術を用いて認知低下推定作業を自動化する最も関連性の高い手法についてレビューする。
トランスフォーマーアーキテクチャやファンデーションモデルのような最先端のアプローチを含む、各モダリティと方法論の重要な特徴と利点について論じる。
ほとんどの場合、テキストのモダリティは最良の結果を得ることができ、認知の低下を検出するのに最も関係がある。
- 参考スコア(独自算出の注目度): 0.5172964916120903
- License:
- Abstract: Cognitive decline is a natural part of aging, often resulting in reduced cognitive abilities. In some cases, however, this decline is more pronounced, typically due to disorders such as Alzheimer's disease. Early detection of anomalous cognitive decline is crucial, as it can facilitate timely professional intervention. While medical data can help in this detection, it often involves invasive procedures. An alternative approach is to employ non-intrusive techniques such as speech or handwriting analysis, which do not necessarily affect daily activities. This survey reviews the most relevant methodologies that use deep learning techniques to automate the cognitive decline estimation task, including audio, text, and visual processing. We discuss the key features and advantages of each modality and methodology, including state-of-the-art approaches like Transformer architecture and foundation models. In addition, we present works that integrate different modalities to develop multimodal models. We also highlight the most significant datasets and the quantitative results from studies using these resources. From this review, several conclusions emerge. In most cases, the textual modality achieves the best results and is the most relevant for detecting cognitive decline. Moreover, combining various approaches from individual modalities into a multimodal model consistently enhances performance across nearly all scenarios.
- Abstract(参考訳): 認知低下は老化の自然な部分であり、しばしば認知能力の低下をもたらす。
しかし、いくつかのケースでは、この減少はより顕著であり、典型的にはアルツハイマー病などの疾患が原因である。
異常認知低下の早期発見は、タイムリーな専門的介入を促進するため、非常に重要である。
この検出には医療データが役立つが、しばしば侵襲的な手順が伴う。
もう一つのアプローチは、日常的な活動に必ずしも影響を与えない、音声や手書き分析のような非侵入的手法を採用することである。
本調査は, 音声, テキスト, 視覚処理を含む認知低下推定作業を自動化するために, ディープラーニング技術を用いた最も関連性の高い手法を概説する。
トランスフォーマーアーキテクチャやファンデーションモデルのような最先端のアプローチを含む、各モダリティと方法論の重要な特徴と利点について論じる。
さらに,様々なモダリティを統合したマルチモーダルモデルを提案する。
また、これらのリソースを用いた研究から、最も重要なデータセットと定量的な結果についても強調する。
このレビューから、いくつかの結論が浮かび上がっている。
ほとんどの場合、テキストのモダリティは最良の結果を得ることができ、認知の低下を検出するのに最も関係がある。
さらに、個々のモダリティからマルチモーダルモデルへの様々なアプローチを組み合わせることで、ほぼすべてのシナリオにおけるパフォーマンスが一貫して向上する。
関連論文リスト
- Explainable cognitive decline detection in free dialogues with a Machine Learning approach based on pre-trained Large Language Models [6.817247544942709]
我々は,認知の低下を検出するために,自由対話から特徴を抽出するために,Large Language Modelsを提案する。
本ソリューションは, (i) 事前処理, (ii) 自然言語処理技術による特徴工学, (iii) 性能を最適化するための特徴解析と選択, (iv) 自動説明可能性による分類を含む。
論文 参考訳(メタデータ) (2024-11-04T12:38:08Z) - A Review of Deep Learning Approaches for Non-Invasive Cognitive Impairment Detection [35.31259047578382]
本稿では,非侵襲的認知障害検出のためのディープラーニング手法の最近の進歩を概説する。
音声や言語,顔,運動運動など,認知低下の非侵襲的指標について検討した。
著しい進歩にもかかわらず、データ標準化とアクセシビリティ、モデル説明可能性、縦断解析の限界、臨床適応などいくつかの課題が残っている。
論文 参考訳(メタデータ) (2024-10-25T17:44:59Z) - Cognitive Insights Across Languages: Enhancing Multimodal Interview Analysis [0.6062751776009752]
軽度認知障害と認知スコアを予測できるマルチモーダルモデルを提案する。
提案モデルでは,インタビューで使用した言語を書き起こし,区別する能力を示す。
提案手法では,提案手法から得られた様々な特徴を詳細に検討する。
論文 参考訳(メタデータ) (2024-06-11T17:59:31Z) - Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
本研究は, スマートフォンで撮影した画像と本質的な臨床および人口統計情報を統合することで, 皮膚病変を分類する新しいマルチモーダル手法を提案する。
この手法の特徴は、超高解像度画像予測に焦点を当てた補助的なタスクの統合である。
PAD-UFES20データセットを用いて,様々なディープラーニングアーキテクチャを用いて実験を行った。
論文 参考訳(メタデータ) (2024-02-16T05:16:20Z) - Multimodal Stress Detection Using Facial Landmarks and Biometric Signals [1.0124625066746595]
マルチモーダル学習は、単一の信号に頼るのではなく、各モーダルの強さに乗じることを目的としている。
本稿では,顔のランドマークと生体信号を統合したストレス検出のためのマルチモーダル学習手法を提案する。
論文 参考訳(メタデータ) (2023-11-06T23:20:30Z) - A Discrepancy Aware Framework for Robust Anomaly Detection [51.710249807397695]
本稿では,DAF(Disdisrepancy Aware Framework)を提案する。
本手法は,デコーダの欠陥同定に外見に依存しないキューを利用して,その合成外観への依存を緩和する。
単純な合成戦略の下では,既存の手法を大きなマージンで上回り,また,最先端のローカライゼーション性能も達成している。
論文 参考訳(メタデータ) (2023-10-11T15:21:40Z) - Quantum Machine Learning in the Cognitive Domain: Alzheimer's Disease Study [0.0]
アルツハイマー病(英語: Alzheimer's disease、AD)は、神経変性疾患の1つである。
認知障害に影響されるタスクの1つは手書きである。
古典的人工知能(AI)手法の最近の進歩は、手書き解析によるADの検出において有望であることを示している。
論文 参考訳(メタデータ) (2023-09-15T16:50:57Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
本稿では,変換器と生成対向ネットワークを用いた不完全なマルチモーダルデータ統合手法を提案する。
アルツハイマー病神経画像イニシアチブコホートを用いたマルチモーダルイメージングによる認知変性と疾患予後の予測に本手法を適用した。
論文 参考訳(メタデータ) (2023-05-25T16:29:16Z) - Leveraging Pretrained Representations with Task-related Keywords for
Alzheimer's Disease Detection [69.53626024091076]
アルツハイマー病(AD)は高齢者に特に顕著である。
事前学習モデルの最近の進歩は、AD検出モデリングを低レベル特徴から高レベル表現にシフトさせる動機付けとなっている。
本稿では,高レベルの音響・言語的特徴から,より優れたAD関連手がかりを抽出する,いくつかの効率的な手法を提案する。
論文 参考訳(メタデータ) (2023-03-14T16:03:28Z) - On Modality Bias Recognition and Reduction [70.69194431713825]
マルチモーダル分類の文脈におけるモダリティバイアス問題について検討する。
本稿では,各ラベルの特徴空間を適応的に学習するプラグアンドプレイ損失関数法を提案する。
本手法は, ベースラインに比べ, 顕著な性能向上を実現している。
論文 参考訳(メタデータ) (2022-02-25T13:47:09Z) - Unsupervised deep learning techniques for powdery mildew recognition
based on multispectral imaging [63.62764375279861]
本稿では,キュウリ葉の粉状ミドウを自動的に認識する深層学習手法を提案する。
マルチスペクトルイメージングデータに適用した教師なし深層学習技術に焦点をあてる。
本稿では, オートエンコーダアーキテクチャを用いて, 疾患検出のための2つの手法を提案する。
論文 参考訳(メタデータ) (2021-12-20T13:29:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。