DataMosaic: Explainable and Verifiable Multi-Modal Data Analytics through Extract-Reason-Verify
- URL: http://arxiv.org/abs/2504.10036v1
- Date: Mon, 14 Apr 2025 09:38:23 GMT
- Title: DataMosaic: Explainable and Verifiable Multi-Modal Data Analytics through Extract-Reason-Verify
- Authors: Zhengxuan Zhang, Zhuowen Liang, Yin Wu, Teng Lin, Yuyu Luo, Nan Tang,
- Abstract summary: Large Language Models (LLMs) are transforming data analytics, but their widespread adoption is hindered by two critical limitations.<n>They are not explainable (opaque reasoning processes) and not verifiable (prone to hallucinations and unchecked errors)<n>We propose DataMosaic, a framework designed to make LLM-powered analytics both explainable and verifiable.
- Score: 11.10351765834947
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) are transforming data analytics, but their widespread adoption is hindered by two critical limitations: they are not explainable (opaque reasoning processes) and not verifiable (prone to hallucinations and unchecked errors). While retrieval-augmented generation (RAG) improves accuracy by grounding LLMs in external data, it fails to address the core challenges of trustworthy analytics - especially when processing noisy, inconsistent, or multi-modal data (for example, text, tables, images). We propose DataMosaic, a framework designed to make LLM-powered analytics both explainable and verifiable. By dynamically extracting task-specific structures (for example, tables, graphs, trees) from raw data, DataMosaic provides transparent, step-by-step reasoning traces and enables validation of intermediate results. Built on a multi-agent framework, DataMosaic orchestrates self-adaptive agents that align with downstream task requirements, enhancing consistency, completeness, and privacy. Through this approach, DataMosaic not only tackles the limitations of current LLM-powered analytics systems but also lays the groundwork for a new paradigm of grounded, accurate, and explainable multi-modal data analytics.
Related papers
- Flowco: Rethinking Data Analysis in the Age of LLMs [2.1874189959020427]
Large language models (LLMs) are now capable of generating such code for simple, routine analyses.
LLMs promise to democratize data science by enabling those with limited programming expertise to conduct data analyses.
Analysts in many real-world settings must often exercise fine-grained control over specific analysis steps.
This paper introduces Flowco, a new mixed-initiative system to address these challenges.
arXiv Detail & Related papers (2025-04-18T19:01:27Z) - Beyond Quacking: Deep Integration of Language Models and RAG into DuckDB [44.057784044659726]
Large language models (LLMs) have made it easier to prototype such retrieval and reasoning data pipelines.<n>This often involves orchestrating data systems, managing data movement, and handling low-level details.<n>We introduce FlockMTL: an extension for abstractions that integrates deeply LLM capabilities and retrieval-augmented generation.
arXiv Detail & Related papers (2025-04-01T19:48:17Z) - DatawiseAgent: A Notebook-Centric LLM Agent Framework for Automated Data Science [4.1431677219677185]
DatawiseAgent is a notebook-centric agent framework that unifies interactions among user, agent and the computational environment.<n>It orchestrates four stages, including DSF-like planning, incremental execution, self-ging, and post-filtering.<n>It consistently outperforms or matches state-of-the-art methods across multiple model settings.
arXiv Detail & Related papers (2025-03-10T08:32:33Z) - Are Large Language Models Good Data Preprocessors? [5.954202581988127]
High-quality textual training data is essential for the success of multimodal data processing tasks.<n> outputs from image captioning models like BLIP and GIT often contain errors and anomalies that are difficult to rectify using rule-based methods.
arXiv Detail & Related papers (2025-02-24T02:57:21Z) - Empowering Large Language Models in Wireless Communication: A Novel Dataset and Fine-Tuning Framework [81.29965270493238]
We develop a specialized dataset aimed at enhancing the evaluation and fine-tuning of large language models (LLMs) for wireless communication applications.
The dataset includes a diverse set of multi-hop questions, including true/false and multiple-choice types, spanning varying difficulty levels from easy to hard.
We introduce a Pointwise V-Information (PVI) based fine-tuning method, providing a detailed theoretical analysis and justification for its use in quantifying the information content of training data.
arXiv Detail & Related papers (2025-01-16T16:19:53Z) - Multi-Task Learning with LLMs for Implicit Sentiment Analysis: Data-level and Task-level Automatic Weight Learning [18.836998294161834]
Implicit sentiment analysis presents significant challenges due to the absence of salient cue words.<n>We introduce MT-ISA, a novel MTL framework that enhances ISA by leveraging the generation and reasoning capabilities of large language models.<n>We introduce data-level and task-level automatic weight learning (AWL), which dynamically identifies relationships and prioritizes more reliable data and critical tasks.
arXiv Detail & Related papers (2024-12-12T08:15:16Z) - MAmmoTH-VL: Eliciting Multimodal Reasoning with Instruction Tuning at Scale [66.73529246309033]
multimodal large language models (MLLMs) have shown significant potential in a broad range of multimodal tasks.<n>Existing instruction-tuning datasets only provide phrase-level answers without any intermediate rationales.<n>We introduce a scalable and cost-effective method to construct a large-scale multimodal instruction-tuning dataset with rich intermediate rationales.
arXiv Detail & Related papers (2024-12-06T18:14:24Z) - Web-Scale Visual Entity Recognition: An LLM-Driven Data Approach [56.55633052479446]
Web-scale visual entity recognition presents significant challenges due to the lack of clean, large-scale training data.
We propose a novel methodology to curate such a dataset, leveraging a multimodal large language model (LLM) for label verification, metadata generation, and rationale explanation.
Experiments demonstrate that models trained on this automatically curated data achieve state-of-the-art performance on web-scale visual entity recognition tasks.
arXiv Detail & Related papers (2024-10-31T06:55:24Z) - Beyond Fine-Tuning: Effective Strategies for Mitigating Hallucinations in Large Language Models for Data Analytics [0.0]
Large Language Models (LLMs) have become increasingly important in natural language processing, enabling advanced data analytics through natural language queries.
These models often generate "hallucinations"-inaccurate or fabricated information-that can undermine their reliability in critical data-driven decision-making.
This research focuses on mitigating hallucinations in LLMs, specifically within the context of data analytics.
arXiv Detail & Related papers (2024-10-26T00:45:42Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - DARG: Dynamic Evaluation of Large Language Models via Adaptive Reasoning Graph [70.79413606968814]
We introduce Dynamic Evaluation of LLMs via Adaptive Reasoning Graph Evolvement (DARG) to dynamically extend current benchmarks with controlled complexity and diversity.
Specifically, we first extract the reasoning graphs of data points in current benchmarks and then perturb the reasoning graphs to generate novel testing data.
Such newly generated test samples can have different levels of complexity while maintaining linguistic diversity similar to the original benchmarks.
arXiv Detail & Related papers (2024-06-25T04:27:53Z) - Advancing Anomaly Detection: Non-Semantic Financial Data Encoding with LLMs [49.57641083688934]
We introduce a novel approach to anomaly detection in financial data using Large Language Models (LLMs) embeddings.
Our experiments demonstrate that LLMs contribute valuable information to anomaly detection as our models outperform the baselines.
arXiv Detail & Related papers (2024-06-05T20:19:09Z) - ReEval: Automatic Hallucination Evaluation for Retrieval-Augmented Large Language Models via Transferable Adversarial Attacks [91.55895047448249]
This paper presents ReEval, an LLM-based framework using prompt chaining to perturb the original evidence for generating new test cases.
We implement ReEval using ChatGPT and evaluate the resulting variants of two popular open-domain QA datasets.
Our generated data is human-readable and useful to trigger hallucination in large language models.
arXiv Detail & Related papers (2023-10-19T06:37:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.