論文の概要: CHARM: Calibrating Reward Models With Chatbot Arena Scores
- arxiv url: http://arxiv.org/abs/2504.10045v1
- Date: Mon, 14 Apr 2025 09:51:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 16:54:23.370381
- Title: CHARM: Calibrating Reward Models With Chatbot Arena Scores
- Title(参考訳): CHARM:チャットボットのアリーナスコアでリワードモデルのキャリブレーション
- Authors: Xiao Zhu, Chenmien Tan, Pinzhen Chen, Rico Sennrich, Yanlin Zhang, Hanxu Hu,
- Abstract要約: リワードモデル(RM)は、人間の好みのプロキシとして機能し、大きな言語モデルを調整することで、人間のフィードバックからの強化学習において重要な役割を果たす。
我々は、RMにおけるモデル優先バイアスを特定し、特定のポリシーモデルからの応答に不均等に高いスコアを体系的に割り当てる。
この問題に対処するために,アリーナリーダーボードからのエロスコアを利用したCHARM(Chaatbot Arena Reward Modeling)というキャリブレーション手法を提案する。
- 参考スコア(独自算出の注目度): 31.599659350165354
- License:
- Abstract: Reward models (RMs) play a crucial role in Reinforcement Learning from Human Feedback by serving as proxies for human preferences in aligning large language models. In this paper, we identify a model preference bias in RMs, where they systematically assign disproportionately high scores to responses from certain policy models. This bias distorts ranking evaluations and leads to unfair judgments. To address this issue, we propose a calibration method named CHatbot Arena calibrated Reward Modeling (CHARM) that leverages Elo scores from the Chatbot Arena leaderboard to mitigate RM overvaluation. We also introduce a Mismatch Degree metric to measure this preference bias. Our approach is computationally efficient, requiring only a small preference dataset for continued training of the RM. We conduct extensive experiments on reward model benchmarks and human preference alignment. Results demonstrate that our calibrated RMs (1) achieve improved evaluation accuracy on RM-Bench and the Chat-Hard domain of RewardBench, and (2) exhibit a stronger correlation with human preferences by producing scores more closely aligned with Elo rankings. By mitigating model preference bias, our method provides a generalizable and efficient solution for building fairer and more reliable reward models.
- Abstract(参考訳): リワードモデル(RM)は、人間の好みのプロキシとして機能し、大きな言語モデルを調整することで、人間のフィードバックからの強化学習において重要な役割を果たす。
本稿では、RMにおけるモデル優先バイアスを特定し、特定のポリシーモデルからの応答に対して不均等に高いスコアを体系的に割り当てる。
このバイアスはランキング評価を歪め、不公平な判断につながる。
この問題に対処するために,Chatbot ArenaのEloスコアを利用したCHARM(CHatbot Calbrated Reward Modeling)というキャリブレーション手法を提案する。
また、この嗜好バイアスを測定するために、Mismatch Degreeメトリックを導入します。
我々の手法は計算効率が良く、RMの継続的な訓練には小さな好みのデータセットしか必要としない。
我々は、報酬モデルベンチマークと人間の嗜好アライメントに関する広範な実験を行う。
その結果,リワードベンチのRM-BenchおよびChat-Hardドメインの評価精度は向上し,また,Eloランキングとより緊密なスコアを得られることにより,ヒトの嗜好と強い相関性を示すことがわかった。
モデル優先バイアスを緩和することにより、より公平で信頼性の高い報酬モデルを構築するための一般化可能かつ効率的なソリューションを提供する。
関連論文リスト
- Self-rationalization improves LLM as a fine-grained judge [21.917301609125417]
本稿では,判断モデルの合理性を改善する反復的プロセスである自己帰納化を導入する。
自己合理化は、モデルが同じ入力に対して合理性を持つ複数の判断を生成させることで機能する。
我々のモデルは、SFTで訓練されたモデルと比較して平均62%の利益率で、より高い品質の合理性を生み出すことを学習している。
論文 参考訳(メタデータ) (2024-10-07T21:05:53Z) - Post-hoc Reward Calibration: A Case Study on Length Bias [28.266675778940133]
リワードモデル(RM)は、トレーニングデータに突発的な相関を利用してバイアスを発生させることができる。
これらのバイアスは、誤った出力ランキング、準最適モデル評価、望ましくない振る舞いの増幅につながる可能性がある。
本稿では、追加データやトレーニングを使わずにバイアスを修正するという課題に対処する。
論文 参考訳(メタデータ) (2024-09-25T22:30:42Z) - Interpretable Preferences via Multi-Objective Reward Modeling and Mixture-of-Experts [23.27203570485055]
人からのフィードバックから強化学習(RLHF)が,大規模言語モデルと人間の嗜好を整合させる主要な手法として登場した。
多次元絶対値データを用いて報酬モデル(RM)を訓練するための2段階の手法を提案する。
我々は、Llama-3 8BでArmoRMを効率よく訓練し、ArmoRMの上部の浅い部分からなるゲーティングネットワークを構築した。
論文 参考訳(メタデータ) (2024-06-18T17:58:28Z) - Prior Constraints-based Reward Model Training for Aligning Large Language Models [58.33118716810208]
本稿では,この問題を解決するために,事前制約に基づくリワードモデル(PCRM)のトレーニング手法を提案する。
PCRMは、前回の制約、特に各比較ペアの出力間の長さ比とコサイン類似性を、最適化の規模を調節しスコアマージンを制御するための報酬モデルトレーニングに組み入れている。
実験結果から,PCRMは報酬スコアのスケーリングを効果的に抑制することによりアライメント性能を著しく向上することが示された。
論文 参考訳(メタデータ) (2024-04-01T07:49:11Z) - RewardBench: Evaluating Reward Models for Language Modeling [100.28366840977966]
本稿では,報酬モデル評価のためのベンチマークデータセットとコードベースであるRewardBenchを紹介する。
データセットは、チャット、推論、安全性にまたがる、プロンプト・チョーゼン・リジェクトされたトリオのコレクションである。
RewardBenchのリーダーボードでは、様々な方法で訓練された報酬モデルを評価する。
論文 参考訳(メタデータ) (2024-03-20T17:49:54Z) - WARM: On the Benefits of Weight Averaged Reward Models [63.08179139233774]
Weight Averaged Reward Models (WARM) を提案する。
最良N法とRL法を用いた要約タスクの実験は、WARMがLLM予測の全体的な品質とアライメントを改善することを示す。
論文 参考訳(メタデータ) (2024-01-22T18:27:08Z) - Confronting Reward Model Overoptimization with Constrained RLHF [114.71591361764547]
成分RM間の相関がこれらの点の位置に有意な影響を及ぼすことを示す。
ラグランジュ乗算器によって自然に表現される動的重みを学習することで、成分RMの重み付けの問題に対処する。
論文 参考訳(メタデータ) (2023-10-06T16:59:17Z) - The Trickle-down Impact of Reward (In-)consistency on RLHF [71.37987812944971]
報酬の不整合性は、人間のフィードバックプロセスから下流の強化学習に悪影響を及ぼすことを示す。
RMの一貫性のベンチマーク戦略であるContrast Instructionsを提案する。
より一貫したRMでトレーニングしたRLHFモデルにより,より有用な応答が得られることを示す。
論文 参考訳(メタデータ) (2023-09-28T04:05:13Z) - Large Language Models are not Fair Evaluators [60.27164804083752]
候補回答の品質ランキングは,文脈の出現順序を変えることで容易にハックできることがわかった。
この操作により、評価結果をスキューし、一方のモデルを他方よりもかなり優れているようにすることができる。
この問題を緩和するための3つのシンプルかつ効果的な戦略を持つフレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-29T07:41:03Z) - Scaling Laws for Reward Model Overoptimization [19.93331579503503]
我々は,ゴールド報酬モデルが,強化学習とベスト・オブ・n$サンプリングのどちらを用いて,プロキシ報酬モデルに対して最適化する際にどのようにスコアが変化するかを検討する。
また、報酬モデルデータセットのサイズ、報酬モデルと政策パラメータの数、および強化学習における報酬に付加されるKLペナルティの係数との関係について検討した。
論文 参考訳(メタデータ) (2022-10-19T17:56:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。