論文の概要: Lightweight Trustworthy Distributed Clustering
- arxiv url: http://arxiv.org/abs/2504.10109v1
- Date: Mon, 14 Apr 2025 11:16:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 16:50:01.041651
- Title: Lightweight Trustworthy Distributed Clustering
- Title(参考訳): 軽量で信頼できる分散クラスタリング
- Authors: Hongyang Li, Caesar Wu, Mohammed Chadli, Said Mammar, Pascal Bouvry,
- Abstract要約: 本稿では,エッジ環境に特化して適応した軽量で完全に分散したk平均クラスタリングアルゴリズムを提案する。
ノード間のデータの正確性と信頼性を確保するために、クラスタセンター更新フェーズ中に、追加のシークレット共有を備えた分散平均化アプローチ、セキュアなマルチパーティテクニックを使用する。
- 参考スコア(独自算出の注目度): 22.41687499847953
- License:
- Abstract: Ensuring data trustworthiness within individual edge nodes while facilitating collaborative data processing poses a critical challenge in edge computing systems (ECS), particularly in resource-constrained scenarios such as autonomous systems sensor networks, industrial IoT, and smart cities. This paper presents a lightweight, fully distributed k-means clustering algorithm specifically adapted for edge environments, leveraging a distributed averaging approach with additive secret sharing, a secure multiparty computation technique, during the cluster center update phase to ensure the accuracy and trustworthiness of data across nodes.
- Abstract(参考訳): 個々のエッジノード内のデータの信頼性を確保すると同時に、コラボレーティブなデータ処理を促進することは、エッジコンピューティングシステム(ECS)において、特に自律システムセンサネットワークや産業用IoT、スマートシティといったリソース制約のあるシナリオにおいて、重要な課題となっている。
本稿では,ノード間のデータの正確さと信頼性を確保するために,クラスタセンター更新フェーズにおいて,分散平均化手法と付加秘密共有,セキュアなマルチパーティ計算手法を活用する,エッジ環境に特化された軽量で完全分散k平均クラスタリングアルゴリズムを提案する。
関連論文リスト
- Interaction-Aware Gaussian Weighting for Clustered Federated Learning [58.92159838586751]
フェデレートラーニング(FL)は、プライバシを維持しながらモデルをトレーニングするための分散パラダイムとして登場した。
本稿では,新たなクラスタリングFL法であるFedGWC(Federated Gaussian Weighting Clustering)を提案する。
ベンチマークデータセットを用いた実験により,FedGWCはクラスタの品質と分類精度において,既存のFLアルゴリズムよりも優れていることがわかった。
論文 参考訳(メタデータ) (2025-02-05T16:33:36Z) - Decentralised Resource Sharing in TinyML: Wireless Bilayer Gossip Parallel SGD for Collaborative Learning [2.6913398550088483]
本稿では,2層化ゴシップ分散並列 Descent (GDD) を提案する。
GDDは断続接続、限られた通信範囲、動的ネットワークトポロジに対処する。
我々は,CFL(Centralized Federated Learning)ベースラインに対するフレームワークの性能を評価する。
論文 参考訳(メタデータ) (2025-01-08T20:14:07Z) - Robust Zero Trust Architecture: Joint Blockchain based Federated learning and Anomaly Detection based Framework [17.919501880326383]
本稿では,IoTネットワーク内の効率的なリモートワークとコラボレーションを支援する分散システムに適した,堅牢なゼロトラストアーキテクチャ(ZTA)を紹介する。
ブロックチェーンベースのフェデレーション学習原則を使用することで、当社のフレームワークは、漏洩したクライアントからの悪意のある更新を防止すべく、堅牢な集約メカニズムを備えている。
このフレームワークは異常検出と信頼計算を統合し、セキュアで信頼性の高いデバイスコラボレーションを分散的に保証する。
論文 参考訳(メタデータ) (2024-06-24T23:15:19Z) - Faster Convergence on Heterogeneous Federated Edge Learning: An Adaptive Clustered Data Sharing Approach [27.86468387141422]
Federated Edge Learning (FEEL)は、6G Hyper-Connectivityのための分散機械学習パラダイムのパイオニアとして登場した。
現在のFEELアルゴリズムは、非独立かつ非独立に分散した(非IID)データと競合し、通信コストの上昇とモデルの精度が損なわれる。
我々はクラスタ化データ共有フレームワークを導入し、クラスタヘッドから信頼されたアソシエイトに部分的なデータを選択的に共有することで、データの均一性を緩和する。
実験により, このフレームワークは, 限られた通信環境において, 収束速度が速く, モデル精度が高い非IIDデータセット上で FEEL を促進することを示した。
論文 参考訳(メタデータ) (2024-06-14T07:22:39Z) - Federated Contrastive Learning for Personalized Semantic Communication [55.46383524190467]
我々は,パーソナライズされたセマンティックコミュニケーションを支援することを目的とした,協調型コントラスト学習フレームワークを設計する。
FedCLは、複数のクライアントにわたるローカルセマンティックエンコーダと、基地局が所有するグローバルセマンティックデコーダの協調トレーニングを可能にする。
分散クライアント間の異種データセットから生じるセマンティック不均衡問題に対処するために,コントラスト学習を用いてセマンティックセントロイドジェネレータを訓練する。
論文 参考訳(メタデータ) (2024-06-13T14:45:35Z) - Distribution-Free Fair Federated Learning with Small Samples [54.63321245634712]
FedFaiREEは、分散化された環境で分散のないフェアラーニングのために小さなサンプルで開発された後処理アルゴリズムである。
公正性と精度の両面において厳密な理論的保証を提供し,実験結果により,提案手法の堅牢な実証検証を行う。
論文 参考訳(メタデータ) (2024-02-25T17:37:53Z) - Dynamically Weighted Federated k-Means [0.0]
フェデレートされたクラスタリングにより、複数のデータソースが協力してデータをクラスタリングし、分散化とプライバシ保護を維持できる。
我々は,ロイドのk-meansクラスタリング法に基づいて,動的に重み付けされたk-means (DWF k-means) という新しいクラスタリングアルゴリズムを提案する。
我々は、クラスタリングスコア、精度、およびv尺度の観点から、アルゴリズムの性能を評価するために、複数のデータセットとデータ分散設定の実験を行う。
論文 参考訳(メタデータ) (2023-10-23T12:28:21Z) - Collaborative Mean Estimation over Intermittently Connected Networks
with Peer-To-Peer Privacy [86.61829236732744]
本研究は、断続接続を有するネットワーク上での分散平均推定(DME)の問題について考察する。
目標は、中央サーバの助けを借りて、分散ノード間でローカライズされたデータサンプルに関するグローバル統計を学習することだ。
ノード間のデータ共有による協調中継とプライバシー漏洩のトレードオフについて検討する。
論文 参考訳(メタデータ) (2023-02-28T19:17:03Z) - Decentralized Stochastic Optimization with Inherent Privacy Protection [103.62463469366557]
分散最適化は、現代の協調機械学習、分散推定と制御、大規模センシングの基本的な構成要素である。
データが関与して以降、分散最適化アルゴリズムの実装において、プライバシ保護がますます重要になっている。
論文 参考訳(メタデータ) (2022-05-08T14:38:23Z) - Semi-Decentralized Federated Edge Learning with Data and Device
Heterogeneity [6.341508488542275]
フェデレーションエッジ学習(FEEL)は、ディープラーニングモデルをトレーニングするために、ネットワークエッジに分散データを効果的に組み込むための、プライバシ保護パラダイムとして多くの注目を集めている。
本稿では,複数のエッジサーバを用いて多数のクライアントノードを協調的に調整する,半分散型フェデレーションエッジ学習(SD-FEEL)という,FEELの新しいフレームワークについて検討する。
効率的なモデル共有のためにエッジサーバ間の低レイテンシ通信を利用することで、SD-FEELは従来のフェデレート学習に比べてはるかにレイテンシの低い訓練データを取り込みながら、より多くのトレーニングデータを組み込むことができる。
論文 参考訳(メタデータ) (2021-12-20T03:06:08Z) - A Low Complexity Decentralized Neural Net with Centralized Equivalence
using Layer-wise Learning [49.15799302636519]
我々は、分散処理ノード(労働者)で最近提案された大規模ニューラルネットワークをトレーニングするために、低複雑性分散学習アルゴリズムを設計する。
我々の設定では、トレーニングデータは作業者間で分散されるが、プライバシやセキュリティ上の懸念からトレーニングプロセスでは共有されない。
本研究では,データが一箇所で利用可能であるかのように,等価な学習性能が得られることを示す。
論文 参考訳(メタデータ) (2020-09-29T13:08:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。