論文の概要: Robust Zero Trust Architecture: Joint Blockchain based Federated learning and Anomaly Detection based Framework
- arxiv url: http://arxiv.org/abs/2406.17172v1
- Date: Mon, 24 Jun 2024 23:15:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 16:11:02.087468
- Title: Robust Zero Trust Architecture: Joint Blockchain based Federated learning and Anomaly Detection based Framework
- Title(参考訳): Robust Zero Trust Architecture: 統合ブロックチェーンベースのフェデレーションラーニングと異常検出ベースのフレームワーク
- Authors: Shiva Raj Pokhrel, Luxing Yang, Sutharshan Rajasegarar, Gang Li,
- Abstract要約: 本稿では,IoTネットワーク内の効率的なリモートワークとコラボレーションを支援する分散システムに適した,堅牢なゼロトラストアーキテクチャ(ZTA)を紹介する。
ブロックチェーンベースのフェデレーション学習原則を使用することで、当社のフレームワークは、漏洩したクライアントからの悪意のある更新を防止すべく、堅牢な集約メカニズムを備えている。
このフレームワークは異常検出と信頼計算を統合し、セキュアで信頼性の高いデバイスコラボレーションを分散的に保証する。
- 参考スコア(独自算出の注目度): 17.919501880326383
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces a robust zero-trust architecture (ZTA) tailored for the decentralized system that empowers efficient remote work and collaboration within IoT networks. Using blockchain-based federated learning principles, our proposed framework includes a robust aggregation mechanism designed to counteract malicious updates from compromised clients, enhancing the security of the global learning process. Moreover, secure and reliable trust computation is essential for remote work and collaboration. The robust ZTA framework integrates anomaly detection and trust computation, ensuring secure and reliable device collaboration in a decentralized fashion. We introduce an adaptive algorithm that dynamically adjusts to varying user contexts, using unsupervised clustering to detect novel anomalies, like zero-day attacks. To ensure a reliable and scalable trust computation, we develop an algorithm that dynamically adapts to varying user contexts by employing incremental anomaly detection and clustering techniques to identify and share local and global anomalies between nodes. Future directions include scalability improvements, Dirichlet process for advanced anomaly detection, privacy-preserving techniques, and the integration of post-quantum cryptographic methods to safeguard against emerging quantum threats.
- Abstract(参考訳): 本稿では,IoTネットワーク内の効率的なリモートワークとコラボレーションを支援する分散システムに適した,堅牢なゼロトラストアーキテクチャ(ZTA)を紹介する。
ブロックチェーンベースのフェデレーション学習の原則を使用して、当社のフレームワークは、漏洩したクライアントからの悪意のある更新を防止し、グローバルな学習プロセスのセキュリティを高めるために設計された、堅牢な集約メカニズムを含む。
さらに、リモートワークやコラボレーションには、セキュアで信頼性の高い信頼計算が不可欠です。
堅牢なZTAフレームワークは異常検出と信頼計算を統合し、セキュアで信頼性の高いデバイスコラボレーションを分散的に保証する。
教師なしクラスタリングを用いて、ゼロデイアタックのような新しい異常を検出する適応アルゴリズムを導入する。
信頼性が高くスケーラブルな信頼計算を実現するため,ノード間の局所的およびグローバルな異常を識別・共有するために,漸進的な異常検出とクラスタリング技術を用いて,様々なユーザコンテキストに動的に適応するアルゴリズムを開発した。
今後の方向性としては、スケーラビリティの改善、高度な異常検出のためのDirichletプロセス、プライバシ保護技術、新たな量子脅威から保護するためのポスト量子暗号メソッドの統合などがある。
関連論文リスト
- Digital Twin-Assisted Federated Learning with Blockchain in Multi-tier Computing Systems [67.14406100332671]
産業用 4.0 システムでは、リソース制約のあるエッジデバイスが頻繁にデータ通信を行う。
本稿では,デジタルツイン (DT) とフェデレーション付きデジタルツイン (FL) 方式を提案する。
提案手法の有効性を数値解析により検証した。
論文 参考訳(メタデータ) (2024-11-04T17:48:02Z) - A Trustworthy AIoT-enabled Localization System via Federated Learning and Blockchain [29.968086297894626]
そこで我々はDFLocというフレームワークを提案し,正確な3Dローカライゼーションを実現する。
具体的には、信頼性が高く正確な屋内位置決めシステムにおける単一点故障の問題に対処する。
悪意のあるノード攻撃の懸念を軽減するため、ブロックチェーン内にモデル検証機構を更新する。
論文 参考訳(メタデータ) (2024-07-08T04:14:19Z) - Securing Federated Learning with Control-Flow Attestation: A Novel Framework for Enhanced Integrity and Resilience against Adversarial Attacks [2.28438857884398]
分散機械学習パラダイムとしてのフェデレートラーニング(FL)は、新たなサイバーセキュリティ課題を導入した。
本研究では,従来サイバーセキュリティに用いられてきた制御フロー(CFA)機構にインスパイアされた,革新的なセキュリティフレームワークを提案する。
我々は、ネットワーク全体にわたるモデル更新の完全性を認証し、検証し、モデル中毒や敵対的干渉に関連するリスクを効果的に軽減する。
論文 参考訳(メタデータ) (2024-03-15T04:03:34Z) - Enhancing Security in Federated Learning through Adaptive
Consensus-Based Model Update Validation [2.28438857884398]
本稿では,ラベルフリップ攻撃に対して,FL(Federated Learning)システムを構築するための高度なアプローチを提案する。
本稿では,適応的しきい値設定機構と統合されたコンセンサスに基づく検証プロセスを提案する。
以上の結果から,FLシステムのレジリエンスを高め,ラベルフリップ攻撃の顕著な緩和効果が示唆された。
論文 参考訳(メタデータ) (2024-03-05T20:54:56Z) - Enhancing Scalability and Reliability in Semi-Decentralized Federated
Learning With Blockchain: Trust Penalization and Asynchronous Functionality [0.0]
本論文は, 信頼金化機構を通じて参加ノードの信頼性を高めることに焦点を当てている。
提案システムは、データのプライバシーを損なうことなく、協調的な機械学習のための公正でセキュアで透明な環境を構築することを目的としている。
論文 参考訳(メタデータ) (2023-10-30T06:05:50Z) - Decentralized Stochastic Optimization with Inherent Privacy Protection [103.62463469366557]
分散最適化は、現代の協調機械学習、分散推定と制御、大規模センシングの基本的な構成要素である。
データが関与して以降、分散最適化アルゴリズムの実装において、プライバシ保護がますます重要になっている。
論文 参考訳(メタデータ) (2022-05-08T14:38:23Z) - Secure Byzantine-Robust Distributed Learning via Clustering [16.85310886805588]
ビザンチンの堅牢性とプライバシを共同で保護するフェデレーション学習システムは、依然としてオープンな問題である。
本研究では,クライアントのプライバシーとロバスト性を同時に保持する分散学習フレームワークであるSHAREを提案する。
論文 参考訳(メタデータ) (2021-10-06T17:40:26Z) - Federated Learning with Unreliable Clients: Performance Analysis and
Mechanism Design [76.29738151117583]
Federated Learning(FL)は、分散クライアント間で効果的な機械学習モデルをトレーニングするための有望なツールとなっている。
しかし、低品質のモデルは信頼性の低いクライアントによってアグリゲータサーバにアップロードすることができ、劣化やトレーニングの崩壊につながる。
クライアントの信頼できない振る舞いをモデル化し、このようなセキュリティリスクを軽減するための防御メカニズムを提案する。
論文 参考訳(メタデータ) (2021-05-10T08:02:27Z) - Closing the Closed-Loop Distribution Shift in Safe Imitation Learning [80.05727171757454]
模倣学習問題において,安全な最適化に基づく制御戦略を専門家として扱う。
我々は、実行時に安価に評価でき、専門家と同じ安全保証を確実に満足する学習されたポリシーを訓練する。
論文 参考訳(メタデータ) (2021-02-18T05:11:41Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
本稿では,ベイズ最適化手法を用いた効果的な異常検出フレームワークを提案する。
ISCX 2012データセットを用いて検討したアルゴリズムの性能を評価する。
実験結果から, 精度, 精度, 低コストアラームレート, リコールの観点から, 提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-08-05T19:29:35Z) - F2A2: Flexible Fully-decentralized Approximate Actor-critic for
Cooperative Multi-agent Reinforcement Learning [110.35516334788687]
分散マルチエージェント強化学習アルゴリズムは複雑なアプリケーションでは実践的でないことがある。
本稿では,大規模で汎用的なマルチエージェント設定を扱える,柔軟な完全分散型アクター批判型MARLフレームワークを提案する。
当社のフレームワークは,大規模環境におけるスケーラビリティと安定性を実現し,情報伝達を低減できる。
論文 参考訳(メタデータ) (2020-04-17T14:56:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。