Lightweight Trustworthy Distributed Clustering
- URL: http://arxiv.org/abs/2504.10109v1
- Date: Mon, 14 Apr 2025 11:16:07 GMT
- Title: Lightweight Trustworthy Distributed Clustering
- Authors: Hongyang Li, Caesar Wu, Mohammed Chadli, Said Mammar, Pascal Bouvry,
- Abstract summary: This paper presents a lightweight, fully distributed k-means clustering algorithm specifically adapted for edge environments.<n>It uses a distributed averaging approach with additive secret sharing, a secure multiparty technique, during the cluster center update phase to ensure the accuracy and trustworthiness of data across nodes.
- Score: 22.41687499847953
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ensuring data trustworthiness within individual edge nodes while facilitating collaborative data processing poses a critical challenge in edge computing systems (ECS), particularly in resource-constrained scenarios such as autonomous systems sensor networks, industrial IoT, and smart cities. This paper presents a lightweight, fully distributed k-means clustering algorithm specifically adapted for edge environments, leveraging a distributed averaging approach with additive secret sharing, a secure multiparty computation technique, during the cluster center update phase to ensure the accuracy and trustworthiness of data across nodes.
Related papers
- Interaction-Aware Gaussian Weighting for Clustered Federated Learning [58.92159838586751]
Federated Learning (FL) emerged as a decentralized paradigm to train models while preserving privacy.<n>We propose a novel clustered FL method, FedGWC (Federated Gaussian Weighting Clustering), which groups clients based on their data distribution.<n>Our experiments on benchmark datasets show that FedGWC outperforms existing FL algorithms in cluster quality and classification accuracy.
arXiv Detail & Related papers (2025-02-05T16:33:36Z) - Decentralised Resource Sharing in TinyML: Wireless Bilayer Gossip Parallel SGD for Collaborative Learning [2.6913398550088483]
This paper proposes a novel framework, bilayer Gossip Decentralised Parallel Descent (GDD)
GDD addresses intermittent connectivity, limited communication range, and dynamic network topologies.
We evaluate the framework's performance against the Centralised Federated Learning (CFL) baseline.
arXiv Detail & Related papers (2025-01-08T20:14:07Z) - Robust Zero Trust Architecture: Joint Blockchain based Federated learning and Anomaly Detection based Framework [17.919501880326383]
This paper introduces a robust zero-trust architecture (ZTA) tailored for the decentralized system that empowers efficient remote work and collaboration within IoT networks.
Using blockchain-based federated learning principles, our proposed framework includes a robust aggregation mechanism designed to counteract malicious updates from compromised clients.
The framework integrates anomaly detection and trust computation, ensuring secure and reliable device collaboration in a decentralized fashion.
arXiv Detail & Related papers (2024-06-24T23:15:19Z) - Faster Convergence on Heterogeneous Federated Edge Learning: An Adaptive Clustered Data Sharing Approach [27.86468387141422]
Federated Edge Learning (FEEL) emerges as a pioneering distributed machine learning paradigm for the 6G Hyper-Connectivity.<n>Current FEEL algorithms struggle with non-independent and non-identically distributed (non-IID) data, leading to elevated communication costs and compromised model accuracy.<n>We introduce a clustered data sharing framework, mitigating data heterogeneity by selectively sharing partial data from cluster heads to trusted associates.<n>Experiments show that the proposed framework facilitates FEEL on non-IID datasets with faster convergence rate and higher model accuracy in a limited communication environment.
arXiv Detail & Related papers (2024-06-14T07:22:39Z) - Federated Contrastive Learning for Personalized Semantic Communication [55.46383524190467]
We design a federated contrastive learning framework aimed at supporting personalized semantic communication.
FedCL enables collaborative training of local semantic encoders across multiple clients and a global semantic decoder owned by the base station.
To tackle the semantic imbalance issue arising from heterogeneous datasets across distributed clients, we employ contrastive learning to train a semantic centroid generator.
arXiv Detail & Related papers (2024-06-13T14:45:35Z) - Distribution-Free Fair Federated Learning with Small Samples [54.63321245634712]
FedFaiREE is a post-processing algorithm developed specifically for distribution-free fair learning in decentralized settings with small samples.
We provide rigorous theoretical guarantees for both fairness and accuracy, and our experimental results further provide robust empirical validation for our proposed method.
arXiv Detail & Related papers (2024-02-25T17:37:53Z) - Dynamically Weighted Federated k-Means [0.0]
Federated clustering enables multiple data sources to collaboratively cluster their data, maintaining decentralization and preserving privacy.
We introduce a novel federated clustering algorithm named Dynamically Weighted Federated k-means (DWF k-means) based on Lloyd's method for k-means clustering.
We conduct experiments on multiple datasets and data distribution settings to evaluate the performance of our algorithm in terms of clustering score, accuracy, and v-measure.
arXiv Detail & Related papers (2023-10-23T12:28:21Z) - Collaborative Mean Estimation over Intermittently Connected Networks
with Peer-To-Peer Privacy [86.61829236732744]
This work considers the problem of Distributed Mean Estimation (DME) over networks with intermittent connectivity.
The goal is to learn a global statistic over the data samples localized across distributed nodes with the help of a central server.
We study the tradeoff between collaborative relaying and privacy leakage due to the additional data sharing among nodes.
arXiv Detail & Related papers (2023-02-28T19:17:03Z) - Decentralized Stochastic Optimization with Inherent Privacy Protection [103.62463469366557]
Decentralized optimization is the basic building block of modern collaborative machine learning, distributed estimation and control, and large-scale sensing.
Since involved data, privacy protection has become an increasingly pressing need in the implementation of decentralized optimization algorithms.
arXiv Detail & Related papers (2022-05-08T14:38:23Z) - Semi-Decentralized Federated Edge Learning with Data and Device
Heterogeneity [6.341508488542275]
Federated edge learning (FEEL) has attracted much attention as a privacy-preserving paradigm to effectively incorporate the distributed data at the network edge for training deep learning models.
In this paper, we investigate a novel framework of FEEL, namely semi-decentralized federated edge learning (SD-FEEL), where multiple edge servers are employed to collectively coordinate a large number of client nodes.
By exploiting the low-latency communication among edge servers for efficient model sharing, SD-FEEL can incorporate more training data, while enjoying much lower latency compared with conventional federated learning.
arXiv Detail & Related papers (2021-12-20T03:06:08Z) - A Low Complexity Decentralized Neural Net with Centralized Equivalence
using Layer-wise Learning [49.15799302636519]
We design a low complexity decentralized learning algorithm to train a recently proposed large neural network in distributed processing nodes (workers)
In our setup, the training data is distributed among the workers but is not shared in the training process due to privacy and security concerns.
We show that it is possible to achieve equivalent learning performance as if the data is available in a single place.
arXiv Detail & Related papers (2020-09-29T13:08:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.