Federated Contrastive Learning for Personalized Semantic Communication
- URL: http://arxiv.org/abs/2406.09182v1
- Date: Thu, 13 Jun 2024 14:45:35 GMT
- Title: Federated Contrastive Learning for Personalized Semantic Communication
- Authors: Yining Wang, Wanli Ni, Wenqiang Yi, Xiaodong Xu, Ping Zhang, Arumugam Nallanathan,
- Abstract summary: We design a federated contrastive learning framework aimed at supporting personalized semantic communication.
FedCL enables collaborative training of local semantic encoders across multiple clients and a global semantic decoder owned by the base station.
To tackle the semantic imbalance issue arising from heterogeneous datasets across distributed clients, we employ contrastive learning to train a semantic centroid generator.
- Score: 55.46383524190467
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this letter, we design a federated contrastive learning (FedCL) framework aimed at supporting personalized semantic communication. Our FedCL enables collaborative training of local semantic encoders across multiple clients and a global semantic decoder owned by the base station. This framework supports heterogeneous semantic encoders since it does not require client-side model aggregation. Furthermore, to tackle the semantic imbalance issue arising from heterogeneous datasets across distributed clients, we employ contrastive learning to train a semantic centroid generator (SCG). This generator obtains representative global semantic centroids that exhibit intra-semantic compactness and inter-semantic separability. Consequently, it provides superior supervision for learning discriminative local semantic features. Additionally, we conduct theoretical analysis to quantify the convergence performance of FedCL. Simulation results verify the superiority of the proposed FedCL framework compared to other distributed learning benchmarks in terms of task performance and robustness under different numbers of clients and channel conditions, especially in low signal-to-noise ratio and highly heterogeneous data scenarios.
Related papers
- Interaction-Aware Gaussian Weighting for Clustered Federated Learning [58.92159838586751]
Federated Learning (FL) emerged as a decentralized paradigm to train models while preserving privacy.
We propose a novel clustered FL method, FedGWC (Federated Gaussian Weighting Clustering), which groups clients based on their data distribution.
Our experiments on benchmark datasets show that FedGWC outperforms existing FL algorithms in cluster quality and classification accuracy.
arXiv Detail & Related papers (2025-02-05T16:33:36Z) - Client-Centric Federated Adaptive Optimization [78.30827455292827]
Federated Learning (FL) is a distributed learning paradigm where clients collaboratively train a model while keeping their own data private.
We propose Federated-Centric Adaptive Optimization, which is a class of novel federated optimization approaches.
arXiv Detail & Related papers (2025-01-17T04:00:50Z) - Benchmarking Federated Learning for Semantic Datasets: Federated Scene Graph Generation [3.499870393443268]
Federated learning (FL) has recently garnered attention as a data-decentralized training framework.
We propose a benchmark process to establish an FL benchmark with controllable semantic heterogeneity across clients.
As a proof of concept, we first construct a federated PSG benchmark, demonstrating the efficacy of the existing PSG methods in an FL setting.
arXiv Detail & Related papers (2024-12-11T08:10:46Z) - Boosting the Performance of Decentralized Federated Learning via Catalyst Acceleration [66.43954501171292]
We introduce Catalyst Acceleration and propose an acceleration Decentralized Federated Learning algorithm called DFedCata.
DFedCata consists of two main components: the Moreau envelope function, which addresses parameter inconsistencies, and Nesterov's extrapolation step, which accelerates the aggregation phase.
Empirically, we demonstrate the advantages of the proposed algorithm in both convergence speed and generalization performance on CIFAR10/100 with various non-iid data distributions.
arXiv Detail & Related papers (2024-10-09T06:17:16Z) - FedClust: Tackling Data Heterogeneity in Federated Learning through Weight-Driven Client Clustering [26.478852701376294]
Federated learning (FL) is an emerging distributed machine learning paradigm.
One of the major challenges in FL is the presence of uneven data distributions across client devices.
We propose em FedClust, a novel approach for CFL that leverages the correlation between local model weights and the data distribution of clients.
arXiv Detail & Related papers (2024-07-09T02:47:16Z) - Federated cINN Clustering for Accurate Clustered Federated Learning [33.72494731516968]
Federated Learning (FL) presents an innovative approach to privacy-preserving distributed machine learning.
We propose the Federated cINN Clustering Algorithm (FCCA) to robustly cluster clients into different groups.
arXiv Detail & Related papers (2023-09-04T10:47:52Z) - Towards Instance-adaptive Inference for Federated Learning [80.38701896056828]
Federated learning (FL) is a distributed learning paradigm that enables multiple clients to learn a powerful global model by aggregating local training.
In this paper, we present a novel FL algorithm, i.e., FedIns, to handle intra-client data heterogeneity by enabling instance-adaptive inference in the FL framework.
Our experiments show that our FedIns outperforms state-of-the-art FL algorithms, e.g., a 6.64% improvement against the top-performing method with less than 15% communication cost on Tiny-ImageNet.
arXiv Detail & Related papers (2023-08-11T09:58:47Z) - FedRC: Tackling Diverse Distribution Shifts Challenge in Federated Learning by Robust Clustering [4.489171618387544]
Federated Learning (FL) is a machine learning paradigm that safeguards privacy by retaining client data on edge devices.
In this paper, we identify the learning challenges posed by the simultaneous occurrence of diverse distribution shifts.
We propose a novel clustering algorithm framework, dubbed as FedRC, which adheres to our proposed clustering principle.
arXiv Detail & Related papers (2023-01-29T06:50:45Z) - Fed-CBS: A Heterogeneity-Aware Client Sampling Mechanism for Federated
Learning via Class-Imbalance Reduction [76.26710990597498]
We show that the class-imbalance of the grouped data from randomly selected clients can lead to significant performance degradation.
Based on our key observation, we design an efficient client sampling mechanism, i.e., Federated Class-balanced Sampling (Fed-CBS)
In particular, we propose a measure of class-imbalance and then employ homomorphic encryption to derive this measure in a privacy-preserving way.
arXiv Detail & Related papers (2022-09-30T05:42:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.