M2S-RoAD: Multi-Modal Semantic Segmentation for Road Damage Using Camera and LiDAR Data
- URL: http://arxiv.org/abs/2504.10123v1
- Date: Mon, 14 Apr 2025 11:32:01 GMT
- Title: M2S-RoAD: Multi-Modal Semantic Segmentation for Road Damage Using Camera and LiDAR Data
- Authors: Tzu-Yun Tseng, Hongyu Lyu, Josephine Li, Julie Stephany Berrio, Mao Shan, Stewart Worrall,
- Abstract summary: This paper introduces M2S-RoAD, a dataset for the semantic segmentation of different classes of road damage.<n>M2S-RoAD was collected in various towns across New South Wales, Australia, and labelled for semantic segmentation to identify nine distinct types of road damage.
- Score: 9.967263440745432
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Road damage can create safety and comfort challenges for both human drivers and autonomous vehicles (AVs). This damage is particularly prevalent in rural areas due to less frequent surveying and maintenance of roads. Automated detection of pavement deterioration can be used as an input to AVs and driver assistance systems to improve road safety. Current research in this field has predominantly focused on urban environments driven largely by public datasets, while rural areas have received significantly less attention. This paper introduces M2S-RoAD, a dataset for the semantic segmentation of different classes of road damage. M2S-RoAD was collected in various towns across New South Wales, Australia, and labelled for semantic segmentation to identify nine distinct types of road damage. This dataset will be released upon the acceptance of the paper.
Related papers
- Segmenting Objectiveness and Task-awareness Unknown Region for Autonomous Driving [46.70405993442064]
We propose a novel framework termed Segmenting Objectiveness and Task-Awareness (SOTA) for autonomous driving scenes.
SOTA enhances the segmentation of objectiveness through a Semantic Fusion Block (SFB) and filters anomalies irrelevant to road navigation tasks.
arXiv Detail & Related papers (2025-04-27T10:08:54Z) - Your Car Tells Me Where You Drove: A Novel Path Inference Attack via CAN Bus and OBD-II Data [57.22545280370174]
On Path Diagnostic - Intrusion & Inference (OPD-II) is a novel path inference attack leveraging a physical car model and a map matching algorithm.
We implement our attack on a set of four different cars and a total number of 41 tracks in different road and traffic scenarios.
arXiv Detail & Related papers (2024-06-30T04:21:46Z) - Cut-and-Paste with Precision: a Content and Perspective-aware Data Augmentation for Road Damage Detection [5.939858158928473]
Road damage can pose significant challenges to the integrity, safety, and durability of road infrastructure.
In recent years, researchers have explored various data-driven methods for image-based damage detection in road monitoring applications.
We propose an improved Cut-and-paste augmentation technique that is both content-aware (i.e. considers the true location of the road in the image) and perspective-aware (i.e. takes into account the difference in perspective between the injected damage and the target image)
arXiv Detail & Related papers (2024-06-06T09:06:42Z) - Leveraging Driver Field-of-View for Multimodal Ego-Trajectory Prediction [69.29802752614677]
RouteFormer is a novel ego-trajectory prediction network combining GPS data, environmental context, and the driver's field-of-view.
To tackle data scarcity and enhance diversity, we introduce GEM, a dataset of urban driving scenarios enriched with synchronized driver field-of-view and gaze data.
arXiv Detail & Related papers (2023-12-13T23:06:30Z) - MSight: An Edge-Cloud Infrastructure-based Perception System for
Connected Automated Vehicles [58.461077944514564]
This paper presents MSight, a cutting-edge roadside perception system specifically designed for automated vehicles.
MSight offers real-time vehicle detection, localization, tracking, and short-term trajectory prediction.
Evaluations underscore the system's capability to uphold lane-level accuracy with minimal latency.
arXiv Detail & Related papers (2023-10-08T21:32:30Z) - RSRD: A Road Surface Reconstruction Dataset and Benchmark for Safe and
Comfortable Autonomous Driving [67.09546127265034]
Road surface reconstruction helps to enhance the analysis and prediction of vehicle responses for motion planning and control systems.
We introduce the Road Surface Reconstruction dataset, a real-world, high-resolution, and high-precision dataset collected with a specialized platform in diverse driving conditions.
It covers common road types containing approximately 16,000 pairs of stereo images, original point clouds, and ground-truth depth/disparity maps.
arXiv Detail & Related papers (2023-10-03T17:59:32Z) - A Counterfactual Safety Margin Perspective on the Scoring of Autonomous
Vehicles' Riskiness [52.27309191283943]
This paper presents a data-driven framework for assessing the risk of different AVs' behaviors.
We propose the notion of counterfactual safety margin, which represents the minimum deviation from nominal behavior that could cause a collision.
arXiv Detail & Related papers (2023-08-02T09:48:08Z) - OpenLane-V2: A Topology Reasoning Benchmark for Unified 3D HD Mapping [84.65114565766596]
We present OpenLane-V2, the first dataset on topology reasoning for traffic scene structure.
OpenLane-V2 consists of 2,000 annotated road scenes that describe traffic elements and their correlation to the lanes.
We evaluate various state-of-the-art methods, and present their quantitative and qualitative results on OpenLane-V2 to indicate future avenues for investigating topology reasoning in traffic scenes.
arXiv Detail & Related papers (2023-04-20T16:31:22Z) - Dynamic loss balancing and sequential enhancement for road-safety
assessment and traffic scene classification [0.0]
Road-safety inspection is an indispensable instrument for reducing road-accident fatalities contributed to road infrastructure.
Recent work formalizes road-safety assessment in terms of carefully selected risk factors that are also known as road-safety attributes.
We propose to reduce dependency on tedious human labor by automating recognition with a two-stage neural architecture.
arXiv Detail & Related papers (2022-11-08T11:10:07Z) - Road Damages Detection and Classification with YOLOv7 [0.0]
This work proposes to collect and label road damage data using Google Street View and use YOLOv7 (You Only Look Once version 7)
The proposed approaches are applied to the Crowdsensing-based Road Damage Detection Challenge (CRDDC2022), IEEE BigData 2022.
arXiv Detail & Related papers (2022-10-31T18:55:58Z) - A Computer Vision-assisted Approach to Automated Real-Time Road
Infrastructure Management [0.0]
We propose a supervised object detection approach to detect and classify road distresses in real-time via a vehicle dashboard-mounted smartphone camera.
Our results rank in the top 5 of 121 teams that entered the IEEE's 2020 Global Road Damage Detection ("GRDC") Challenge.
arXiv Detail & Related papers (2022-02-27T04:08:00Z) - Detecting 32 Pedestrian Attributes for Autonomous Vehicles [103.87351701138554]
In this paper, we address the problem of jointly detecting pedestrians and recognizing 32 pedestrian attributes.
We introduce a Multi-Task Learning (MTL) model relying on a composite field framework, which achieves both goals in an efficient way.
We show competitive detection and attribute recognition results, as well as a more stable MTL training.
arXiv Detail & Related papers (2020-12-04T15:10:12Z) - Transfer Learning-based Road Damage Detection for Multiple Countries [41.74498230885008]
municipalities and road authorities seek to implement automated evaluation of road damage.
Japan has developed less expensive and readily available Smartphone-based methods for automatic road condition monitoring.
This work assesses the usability of the Japanese model for other countries.
It proposes a large-scale heterogeneous road damage dataset comprising 26620 images collected from multiple countries using smartphones.
arXiv Detail & Related papers (2020-08-30T06:48:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.