論文の概要: GeoUni: A Unified Model for Generating Geometry Diagrams, Problems and Problem Solutions
- arxiv url: http://arxiv.org/abs/2504.10146v1
- Date: Mon, 14 Apr 2025 11:56:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 16:54:22.769341
- Title: GeoUni: A Unified Model for Generating Geometry Diagrams, Problems and Problem Solutions
- Title(参考訳): GeoUni: 幾何学図, 問題, 問題の解を生成する統一モデル
- Authors: Jo-Ku Cheng, Zeren Zhang, Ran Chen, Jingyang Deng, Ziran Qin, Jinwen Ma,
- Abstract要約: 一つのフレームワーク内で問題解と図を生成することのできる最初の統一幾何エキスパートモデルであるGeoUniを提案する。
1.5Bのパラメータしか持たないGeoUniは、幾何学的推論タスクにおいて、671Bのパラメータを持つDeepSeek-R1のようなより大きなモデルに匹敵するパフォーマンスを達成する。
GeoUniは正確な幾何学図の作成にも優れており、GPT-4o画像生成を含むテキスト・ツー・イメージモデルと統一モデルの両方を超越している。
- 参考スコア(独自算出の注目度): 9.55713776359176
- License:
- Abstract: We propose GeoUni, the first unified geometry expert model capable of generating problem solutions and diagrams within a single framework in a way that enables the creation of unique and individualized geometry problems. Traditionally, solving geometry problems and generating diagrams have been treated as separate tasks in machine learning, with no models successfully integrating both to support problem creation. However, we believe that mastery in geometry requires frictionless integration of all of these skills, from solving problems to visualizing geometric relationships, and finally, crafting tailored problems. Our extensive experiments demonstrate that GeoUni, with only 1.5B parameters, achieves performance comparable to larger models such as DeepSeek-R1 with 671B parameters in geometric reasoning tasks. GeoUni also excels in generating precise geometric diagrams, surpassing both text-to-image models and unified models, including the GPT-4o image generation. Most importantly, GeoUni is the only model capable of successfully generating textual problems with matching diagrams based on specific knowledge points, thus offering a wider range of capabilities that extend beyond current models.
- Abstract(参考訳): 一つのフレームワーク内で問題解や図を生成できる最初の統一幾何エキスパートモデルであるGeoUniを提案する。
伝統的に、幾何学的問題を解くこととダイアグラムを生成することは、機械学習において別のタスクとして扱われてきた。
しかし、幾何学の習得には、問題を解くことから幾何学的関係を可視化すること、そして最後に調整された問題を創り出すことまで、これらのスキルの摩擦のない統合が必要であると我々は信じている。
1.5Bのパラメータしか持たないGeoUniは、幾何学的推論タスクにおいて、671Bのパラメータを持つDeepSeek-R1のような大規模モデルに匹敵する性能を実現する。
GeoUniは正確な幾何学図の作成にも優れており、GPT-4o画像生成を含むテキスト・ツー・イメージモデルと統一モデルの両方を超越している。
最も重要な点として、GeoUniは特定の知識ポイントに基づいてマッチングダイアグラムでテキストの問題をうまく生成できる唯一のモデルである。
関連論文リスト
- GeoX: Geometric Problem Solving Through Unified Formalized Vision-Language Pre-training [45.42400674977197]
GeoXは幾何学的理解と推論タスクに焦点を当てたマルチモーダルな大規模モデルである。
図形エンコーダとシンボルデコーダを開発するために,単調な事前学習を導入し,幾何学的画像やコーパスの理解を深める。
本研究では,識別クエリを生成し,不均一に分布した幾何学的信号から不定形表現を除去するジェネレータ・アンド・サンプラー変換器(GS-Former)を提案する。
論文 参考訳(メタデータ) (2024-12-16T15:20:03Z) - Geo-LLaVA: A Large Multi-Modal Model for Solving Geometry Math Problems with Meta In-Context Learning [4.4615747404424395]
幾何学数学の問題は、大言語モデル(LLM)に重大な課題をもたらす
地理マス(GeoMath)と呼ばれる中国の高校教育Webサイトから,幾何学的データを抽出して,幾何学的質問応答データセットを収集する。
メタトレーニングと呼ばれる学習段階において、教師付き微調整(SFT)による検索強化を取り入れたGeo-LLaVAと呼ばれるLarge Multi-modal Model(LMM)フレームワークを提案する。
論文 参考訳(メタデータ) (2024-12-12T07:34:09Z) - GeoGPT4V: Towards Geometric Multi-modal Large Language Models with Geometric Image Generation [15.931398242118073]
GPT-4とGPT-4Vは、アライメントされたテキストと画像で基本的な幾何学的問題を生成するために使用される。
我々は4.9Kの幾何問題のデータセットを作成し、それを19Kのオープンソースデータと組み合わせてGeoGPT4Vデータセットを作成しました。
その結果、GeoGPT4Vデータセットは、MathVistaおよびMathVisionベンチマークの様々なモデルの幾何性能を著しく改善することを示した。
論文 参考訳(メタデータ) (2024-06-17T13:04:27Z) - A Survey of Geometric Graph Neural Networks: Data Structures, Models and Applications [71.809127869349]
本稿では、幾何学的メッセージパッシングの観点から、既存のモデルの統一的なビューを提供するデータ構造として幾何学的グラフを定式化する。
また、方法論開発と実験評価の後の研究を促進するために、アプリケーションと関連するデータセットを要約する。
論文 参考訳(メタデータ) (2024-03-01T12:13:04Z) - Adaptive Surface Normal Constraint for Geometric Estimation from Monocular Images [56.86175251327466]
本稿では,幾何学的文脈を取り入れつつ,画像から深度や表面正規度などの測地を学習するための新しい手法を提案する。
提案手法は,入力画像に存在する幾何学的変動を符号化した幾何学的文脈を抽出し,幾何的制約と深度推定を相関付ける。
本手法は,画像から高品質な3次元形状を生成可能な密着型フレームワーク内での深度と表面の正規分布推定を統一する。
論文 参考訳(メタデータ) (2024-02-08T17:57:59Z) - GAPS: Geometry-Aware Problem Solver [7.9345421580482185]
幾何学的問題解決は、NLPコミュニティにおける深刻な課題である。
既存のアプローチは、しばしば数学の単語問題を解くために設計されたモデルに依存し、幾何学の数学問題の特異な特徴を無視する。
本研究では,GAPS(Geometry-Aware Problem Solver)モデルを提案する。
GAPSは、様々なタイプの幾何学数学問題に対する解プログラムを生成するように設計されている。
論文 参考訳(メタデータ) (2024-01-29T16:48:34Z) - G-LLaVA: Solving Geometric Problem with Multi-Modal Large Language Model [124.68242155098189]
大規模言語モデル(LLM)は、人間レベルの推論と生成能力に顕著な習熟性を示している。
G-LLaVAは幾何学的問題の解法において例外的な性能を示し、7Bパラメータしか持たないMathVistaベンチマークにおいて GPT-4-V を著しく上回っている。
論文 参考訳(メタデータ) (2023-12-18T17:36:20Z) - UniGeo: Unifying Geometry Logical Reasoning via Reformulating
Mathematical Expression [127.68780714438103]
計算と証明の2つの主要な幾何学問題は、通常2つの特定のタスクとして扱われる。
我々は4,998の計算問題と9,543の証明問題を含むUniGeoという大規模統一幾何問題ベンチマークを構築した。
また,複数タスクの幾何変換フレームワークであるGeoformerを提案し,計算と証明を同時に行う。
論文 参考訳(メタデータ) (2022-12-06T04:37:51Z) - GeoQA: A Geometric Question Answering Benchmark Towards Multimodal
Numerical Reasoning [172.36214872466707]
我々は、テキスト記述、視覚図、定理知識の包括的理解を必要とする幾何学的問題を解くことに注力する。
そこで本研究では,5,010の幾何学的問題を含む幾何学的質問応答データセットGeoQAを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:34:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。