Kullback-Leibler excess risk bounds for exponential weighted aggregation in Generalized linear models
- URL: http://arxiv.org/abs/2504.10171v1
- Date: Mon, 14 Apr 2025 12:25:11 GMT
- Title: Kullback-Leibler excess risk bounds for exponential weighted aggregation in Generalized linear models
- Authors: The Tien Mai,
- Abstract summary: This paper investigates the problem of sparse aggregation in generalized linear models (GLMs)<n>We prove that an exponential weighted aggregation scheme yields a sharp inequality oracle for the Kullback-Leibler risk with leading constant equal to one, while also attaining the minimax-optimal rate of aggregation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Aggregation methods have emerged as a powerful and flexible framework in statistical learning, providing unified solutions across diverse problems such as regression, classification, and density estimation. In the context of generalized linear models (GLMs), where responses follow exponential family distributions, aggregation offers an attractive alternative to classical parametric modeling. This paper investigates the problem of sparse aggregation in GLMs, aiming to approximate the true parameter vector by a sparse linear combination of predictors. We prove that an exponential weighted aggregation scheme yields a sharp oracle inequality for the Kullback-Leibler risk with leading constant equal to one, while also attaining the minimax-optimal rate of aggregation. These results are further enhanced by establishing high-probability bounds on the excess risk.
Related papers
- A Hybrid Mixture of $t$-Factor Analyzers for Clustering High-dimensional Data [0.07673339435080444]
This paper develops a novel hybrid approach for estimating the mixture model of $t$-factor analyzers (MtFA)
The effectiveness of our approach is demonstrated through simulations showcasing its superior computational efficiency compared to the existing method.
Our method is applied to cluster the Gamma-ray bursts, reinforcing several claims in the literature that Gamma-ray bursts have heterogeneous subpopulations and providing characterizations of the estimated groups.
arXiv Detail & Related papers (2025-04-29T18:59:58Z) - Learning a Class of Mixed Linear Regressions: Global Convergence under General Data Conditions [1.9295130374196499]
Mixed linear regression (MLR) has attracted increasing attention because of its great theoretical and practical importance in nonlinear relationships by utilizing a mixture of linear regression sub-models.<n>Although considerable efforts have been devoted to the learning problem of such systems, most existing investigations impose the strict independent and identically distributed (i.i.d.) or distributed PE conditions.
arXiv Detail & Related papers (2025-03-24T09:57:39Z) - Precise analysis of ridge interpolators under heavy correlations -- a Random Duality Theory view [0.0]
We show that emphRandom Duality Theory (RDT) can be utilized to obtain precise closed form characterizations of all estimators related optimizing quantities of interest.
arXiv Detail & Related papers (2024-06-13T14:56:52Z) - Scaling and renormalization in high-dimensional regression [72.59731158970894]
This paper presents a succinct derivation of the training and generalization performance of a variety of high-dimensional ridge regression models.
We provide an introduction and review of recent results on these topics, aimed at readers with backgrounds in physics and deep learning.
arXiv Detail & Related papers (2024-05-01T15:59:00Z) - Learning a Gaussian Mixture for Sparsity Regularization in Inverse
Problems [2.375943263571389]
In inverse problems, the incorporation of a sparsity prior yields a regularization effect on the solution.
We propose a probabilistic sparsity prior formulated as a mixture of Gaussians, capable of modeling sparsity with respect to a generic basis.
We put forth both a supervised and an unsupervised training strategy to estimate the parameters of this network.
arXiv Detail & Related papers (2024-01-29T22:52:57Z) - Aggregation Weighting of Federated Learning via Generalization Bound
Estimation [65.8630966842025]
Federated Learning (FL) typically aggregates client model parameters using a weighting approach determined by sample proportions.
We replace the aforementioned weighting method with a new strategy that considers the generalization bounds of each local model.
arXiv Detail & Related papers (2023-11-10T08:50:28Z) - Generalized generalized linear models: Convex estimation and online
bounds [11.295523372922533]
We introduce inequalities in a class of models (GL-based) models (GGLM)
The proposed approach uses the operator-based approach to overcome nontemporal variation among models.
We demonstrate the performance using numerical simulations and a real data example for incidents.
arXiv Detail & Related papers (2023-04-26T19:19:42Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
This paper proposes a flexible algorithmic framework for graph learning under low-rank structural constraints.
The problem is expressed as penalized maximum likelihood estimation of an elliptical distribution.
We leverage geometries of positive definite matrices and positive semi-definite matrices of fixed rank that are well suited to elliptical models.
arXiv Detail & Related papers (2022-10-21T13:19:45Z) - Nonconvex Stochastic Scaled-Gradient Descent and Generalized Eigenvector
Problems [98.34292831923335]
Motivated by the problem of online correlation analysis, we propose the emphStochastic Scaled-Gradient Descent (SSD) algorithm.
We bring these ideas together in an application to online correlation analysis, deriving for the first time an optimal one-time-scale algorithm with an explicit rate of local convergence to normality.
arXiv Detail & Related papers (2021-12-29T18:46:52Z) - A non-asymptotic model selection in block-diagonal mixture of polynomial
experts models [1.491109220586182]
We introduce a penalized maximum likelihood selection criterion to estimate the unknown conditional density of a regression model.
We provide a strong theoretical guarantee, including a finite-sample oracle satisfied by the penalized maximum likelihood with a Jensen-Kullback-Leibler type loss.
arXiv Detail & Related papers (2021-04-18T21:32:20Z) - Benign Overfitting of Constant-Stepsize SGD for Linear Regression [122.70478935214128]
inductive biases are central in preventing overfitting empirically.
This work considers this issue in arguably the most basic setting: constant-stepsize SGD for linear regression.
We reflect on a number of notable differences between the algorithmic regularization afforded by (unregularized) SGD in comparison to ordinary least squares.
arXiv Detail & Related papers (2021-03-23T17:15:53Z) - Estimation of Switched Markov Polynomial NARX models [75.91002178647165]
We identify a class of models for hybrid dynamical systems characterized by nonlinear autoregressive (NARX) components.
The proposed approach is demonstrated on a SMNARX problem composed by three nonlinear sub-models with specific regressors.
arXiv Detail & Related papers (2020-09-29T15:00:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.