論文の概要: Localized Cultural Knowledge is Conserved and Controllable in Large Language Models
- arxiv url: http://arxiv.org/abs/2504.10191v1
- Date: Mon, 14 Apr 2025 12:53:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 16:55:10.930640
- Title: Localized Cultural Knowledge is Conserved and Controllable in Large Language Models
- Title(参考訳): 大規模言語モデルにおける局所的文化知識の保存と制御
- Authors: Veniamin Veselovsky, Berke Argin, Benedikt Stroebl, Chris Wendler, Robert West, James Evans, Thomas L. Griffiths, Arvind Narayanan,
- Abstract要約: 文化的な文脈を明示的に提供することで、モデルが文化的に局所的な応答を生成できる能力が大幅に向上することを示す。
しかし、明確な促進効果にもかかわらず、答えは多様性を減らし、ステレオタイプに傾向がある。
我々は、すべての非英語言語にまたがって保存された明示的な文化的カスタマイズベクターを特定し、LLMを合成英語文化世界モデルから、各非英語文化世界に向けて操ることを可能にする。
- 参考スコア(独自算出の注目度): 20.411764699679058
- License:
- Abstract: Just as humans display language patterns influenced by their native tongue when speaking new languages, LLMs often default to English-centric responses even when generating in other languages. Nevertheless, we observe that local cultural information persists within the models and can be readily activated for cultural customization. We first demonstrate that explicitly providing cultural context in prompts significantly improves the models' ability to generate culturally localized responses. We term the disparity in model performance with versus without explicit cultural context the explicit-implicit localization gap, indicating that while cultural knowledge exists within LLMs, it may not naturally surface in multilingual interactions if cultural context is not explicitly provided. Despite the explicit prompting benefit, however, the answers reduce in diversity and tend toward stereotypes. Second, we identify an explicit cultural customization vector, conserved across all non-English languages we explore, which enables LLMs to be steered from the synthetic English cultural world-model toward each non-English cultural world. Steered responses retain the diversity of implicit prompting and reduce stereotypes to dramatically improve the potential for customization. We discuss the implications of explicit cultural customization for understanding the conservation of alternative cultural world models within LLMs, and their controllable utility for translation, cultural customization, and the possibility of making the explicit implicit through soft control for expanded LLM function and appeal.
- Abstract(参考訳): 人間が新しい言語を話すとき、母国語の影響を受けている言語パターンを表示するのと同じように、LLMは、他の言語で生成しても英語中心の応答にデフォルトとなることが多い。
それにもかかわらず、我々は、地域の文化的情報がモデル内に留まり、文化的なカスタマイズのために容易に活性化できることを観察する。
まず、文化的な文脈を明示的に提供することで、文化的な局所的な応答を生成するモデルの能力が大幅に向上することを示す。
本研究は,LLM内には文化的な知識が存在するが,文化的な文脈が明確に提供されていない場合,多言語間相互作用において自然に現れるものではないことを示す。
しかし、明確な促進効果にもかかわらず、答えは多様性を減らし、ステレオタイプに傾向がある。
第2に、探索するすべての非英語言語にまたがる、明示的な文化的カスタマイズベクターを特定し、LLMを合成英語文化世界モデルから、各非英語文化世界に向けて操ることを可能にする。
ステアリングされた応答は暗黙的な刺激の多様性を保持し、ステレオタイプを減らし、カスタマイズの可能性を大幅に改善する。
本稿では, LLM における代替文化世界モデルの保存と, 翻訳, 文化のカスタマイズ, および, LLM の機能拡張と魅力向上のためのソフトコントロールによる明示的暗黙化の可能性を理解するために, 明示的文化のカスタマイズがもたらす意味について論じる。
関連論文リスト
- CultureVLM: Characterizing and Improving Cultural Understanding of Vision-Language Models for over 100 Countries [63.00147630084146]
視覚言語モデル(VLM)は高度な人間とAIの相互作用を持つが、文化的な理解に苦慮している。
CultureVerseは大規模なマルチモーダルベンチマークで、682の文化的概念、188の国/地域、15の文化的概念、3の質問タイプをカバーしている。
本稿では,文化理解の大幅な向上を実現するために,我々のデータセットを微調整したVLMのシリーズであるCultureVLMを提案する。
論文 参考訳(メタデータ) (2025-01-02T14:42:37Z) - Survey of Cultural Awareness in Language Models: Text and Beyond [39.77033652289063]
大規模言語モデル(LLM)を様々なアプリケーションに大規模に展開するには、LCMはインクリビティを確保するために、ユーザに文化的に敏感である必要がある。
文化は心理学や人類学で広く研究され、近年、LLMをより文化的に包括的にする研究が急増している。
論文 参考訳(メタデータ) (2024-10-30T16:37:50Z) - Self-Pluralising Culture Alignment for Large Language Models [36.689491885394034]
本稿では,大規模言語モデルと多言語文化との整合性を実現するフレームワークであるCultureSPAを提案する。
カルチャー・アウェア/アウェアアウトプットを比較することで、カルチャー関連インスタンスを検出し、収集することができる。
広範囲な実験により、CultureSPAは、一般の能力を損なうことなく、多様な文化へのLCMのアライメントを著しく改善することが示された。
論文 参考訳(メタデータ) (2024-10-16T19:06:08Z) - Navigating the Cultural Kaleidoscope: A Hitchhiker's Guide to Sensitivity in Large Language Models [4.771099208181585]
LLMはますますグローバルなアプリケーションにデプロイされ、さまざまなバックグラウンドを持つユーザが尊敬され、理解されることが保証される。
文化的な害は、これらのモデルが特定の文化的規範と一致しないときに起こり、文化的な価値観の誤った表現や違反をもたらす。
潜在的な文化的不感を露呈するシナリオを通じて、異なる文化的文脈におけるモデルアウトプットを評価するために作成された文化的調和テストデータセットと、多様なアノテータからのフィードバックに基づいた微調整による文化的感受性の回復を目的とした、文化的に整合した選好データセットである。
論文 参考訳(メタデータ) (2024-10-15T18:13:10Z) - Self-Alignment: Improving Alignment of Cultural Values in LLMs via In-Context Learning [13.034603322224548]
In-context Learning(ICL)とヒューマンサーベイデータを組み合わせた簡易で安価な手法を提案する。
本手法は、英語以外のテスト言語で有用であることが証明され、文化的に多種多様な国に対応する文化的価値との整合性を向上させることができる。
論文 参考訳(メタデータ) (2024-08-29T12:18:04Z) - Translating Across Cultures: LLMs for Intralingual Cultural Adaptation [12.5954253354303]
文化適応の課題を定義し,現代LLMの性能を評価するための評価枠組みを構築した。
我々は、自動適応で起こりうる問題を解析する。
本稿は, LLMの文化的理解と, 異文化のシナリオにおける創造性について, より深い知見を提供していくことを願っている。
論文 参考訳(メタデータ) (2024-06-20T17:06:58Z) - Understanding the Capabilities and Limitations of Large Language Models for Cultural Commonsense [98.09670425244462]
大規模言語モデル(LLM)は、かなりの常識的理解を示している。
本稿では,文化的コモンセンスタスクの文脈におけるいくつかの最先端LCMの能力と限界について検討する。
論文 参考訳(メタデータ) (2024-05-07T20:28:34Z) - CULTURE-GEN: Revealing Global Cultural Perception in Language Models through Natural Language Prompting [73.94059188347582]
110か国・地域での3つのSOTAモデルの文化認識を,文化条件付き世代を通して8つの文化関連トピックについて明らかにした。
文化条件付き世代は、デフォルトの文化と区別される余分な文化を区別する言語的な「マーカー」から成り立っていることが判明した。
論文 参考訳(メタデータ) (2024-04-16T00:50:43Z) - Does Mapo Tofu Contain Coffee? Probing LLMs for Food-related Cultural Knowledge [47.57055368312541]
FmLAMA(FmLAMA)は、食品関連の文化的事実と食実践のバリエーションに着目した多言語データセットである。
我々は,LLMを様々なアーキテクチャや構成にわたって分析し,その性能を単言語と多言語の両方で評価する。
論文 参考訳(メタデータ) (2024-04-10T08:49:27Z) - Not All Countries Celebrate Thanksgiving: On the Cultural Dominance in
Large Language Models [89.94270049334479]
本稿では,大規模言語モデル(LLM)における文化的優位性について述べる。
LLMは、ユーザーが非英語で尋ねるときに期待する文化とは無関係な、不適切な英語文化関連の回答を提供することが多い。
論文 参考訳(メタデータ) (2023-10-19T05:38:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。