Localized Cultural Knowledge is Conserved and Controllable in Large Language Models
- URL: http://arxiv.org/abs/2504.10191v1
- Date: Mon, 14 Apr 2025 12:53:58 GMT
- Title: Localized Cultural Knowledge is Conserved and Controllable in Large Language Models
- Authors: Veniamin Veselovsky, Berke Argin, Benedikt Stroebl, Chris Wendler, Robert West, James Evans, Thomas L. Griffiths, Arvind Narayanan,
- Abstract summary: We show that explicitly providing cultural context in prompts significantly improves the models' ability to generate culturally localized responses.<n>Despite the explicit prompting benefit, however, the answers reduce in diversity and tend toward stereotypes.<n>We identify an explicit cultural customization vector, conserved across all non-English languages, which enables LLMs to be steered from the synthetic English cultural world-model toward each non-English cultural world.
- Score: 20.411764699679058
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Just as humans display language patterns influenced by their native tongue when speaking new languages, LLMs often default to English-centric responses even when generating in other languages. Nevertheless, we observe that local cultural information persists within the models and can be readily activated for cultural customization. We first demonstrate that explicitly providing cultural context in prompts significantly improves the models' ability to generate culturally localized responses. We term the disparity in model performance with versus without explicit cultural context the explicit-implicit localization gap, indicating that while cultural knowledge exists within LLMs, it may not naturally surface in multilingual interactions if cultural context is not explicitly provided. Despite the explicit prompting benefit, however, the answers reduce in diversity and tend toward stereotypes. Second, we identify an explicit cultural customization vector, conserved across all non-English languages we explore, which enables LLMs to be steered from the synthetic English cultural world-model toward each non-English cultural world. Steered responses retain the diversity of implicit prompting and reduce stereotypes to dramatically improve the potential for customization. We discuss the implications of explicit cultural customization for understanding the conservation of alternative cultural world models within LLMs, and their controllable utility for translation, cultural customization, and the possibility of making the explicit implicit through soft control for expanded LLM function and appeal.
Related papers
- CAReDiO: Cultural Alignment of LLM via Representativeness and Distinctiveness Guided Data Optimization [50.90288681622152]
Large Language Models (LLMs) more deeply integrate into human life across various regions.
Existing approaches develop culturally aligned LLMs through fine-tuning with culture-specific corpora.
We introduce CAReDiO, a novel cultural data construction framework.
arXiv Detail & Related papers (2025-04-09T13:40:13Z) - Cultural Learning-Based Culture Adaptation of Language Models [70.1063219524999]
Adapting large language models (LLMs) to diverse cultural values is a challenging task.<n>We present CLCA, a novel framework for enhancing LLM alignment with cultural values based on cultural learning.
arXiv Detail & Related papers (2025-04-03T18:16:26Z) - Survey of Cultural Awareness in Language Models: Text and Beyond [39.77033652289063]
Large-scale deployment of large language models (LLMs) in various applications requires LLMs to be culturally sensitive to the user to ensure inclusivity.
Culture has been widely studied in psychology and anthropology, and there has been a recent surge in research on making LLMs more culturally inclusive.
arXiv Detail & Related papers (2024-10-30T16:37:50Z) - Navigating the Cultural Kaleidoscope: A Hitchhiker's Guide to Sensitivity in Large Language Models [4.771099208181585]
LLMs are increasingly deployed in global applications, ensuring users from diverse backgrounds feel respected and understood.<n>Cultural harm can arise when these models fail to align with specific cultural norms, resulting in misrepresentations or violations of cultural values.<n>We present two key contributions: A cultural harm test dataset, created to assess model outputs across different cultural contexts through scenarios that expose potential cultural insensitivities, and a culturally aligned preference dataset, aimed at restoring cultural sensitivity through fine-tuning based on feedback from diverse annotators.
arXiv Detail & Related papers (2024-10-15T18:13:10Z) - Self-Alignment: Improving Alignment of Cultural Values in LLMs via In-Context Learning [13.034603322224548]
We present a simple and inexpensive method that uses a combination of in-context learning (ICL) and human survey data.
We show that our method could prove useful in test languages other than English and can improve alignment to the cultural values that correspond to a range of culturally diverse countries.
arXiv Detail & Related papers (2024-08-29T12:18:04Z) - Translating Across Cultures: LLMs for Intralingual Cultural Adaptation [12.5954253354303]
We define the task of cultural adaptation and create an evaluation framework to evaluate the performance of modern LLMs.
We analyze possible issues with automatic adaptation.
We hope that this paper will offer more insight into the cultural understanding of LLMs and their creativity in cross-cultural scenarios.
arXiv Detail & Related papers (2024-06-20T17:06:58Z) - Understanding the Capabilities and Limitations of Large Language Models for Cultural Commonsense [98.09670425244462]
Large language models (LLMs) have demonstrated substantial commonsense understanding.
This paper examines the capabilities and limitations of several state-of-the-art LLMs in the context of cultural commonsense tasks.
arXiv Detail & Related papers (2024-05-07T20:28:34Z) - CULTURE-GEN: Revealing Global Cultural Perception in Language Models through Natural Language Prompting [73.94059188347582]
We uncover culture perceptions of three SOTA models on 110 countries and regions on 8 culture-related topics through culture-conditioned generations.
We discover that culture-conditioned generation consist of linguistic "markers" that distinguish marginalized cultures apart from default cultures.
arXiv Detail & Related papers (2024-04-16T00:50:43Z) - Does Mapo Tofu Contain Coffee? Probing LLMs for Food-related Cultural Knowledge [47.57055368312541]
We introduce FmLAMA, a multilingual dataset centered on food-related cultural facts and variations in food practices.
We analyze LLMs across various architectures and configurations, evaluating their performance in both monolingual and multilingual settings.
arXiv Detail & Related papers (2024-04-10T08:49:27Z) - Not All Countries Celebrate Thanksgiving: On the Cultural Dominance in
Large Language Models [89.94270049334479]
This paper identifies a cultural dominance issue within large language models (LLMs)
LLMs often provide inappropriate English-culture-related answers that are not relevant to the expected culture when users ask in non-English languages.
arXiv Detail & Related papers (2023-10-19T05:38:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.