Balancing Stability and Plasticity in Pretrained Detector: A Dual-Path Framework for Incremental Object Detection
- URL: http://arxiv.org/abs/2504.10214v1
- Date: Mon, 14 Apr 2025 13:31:35 GMT
- Title: Balancing Stability and Plasticity in Pretrained Detector: A Dual-Path Framework for Incremental Object Detection
- Authors: Songze Li, Qixing Xu, Tonghua Su, Xu-Yao Zhang, Zhongjie Wang,
- Abstract summary: The balance between stability and plasticity remains a fundamental challenge in pretrained model-based incremental object detection.<n>We propose a dual-path framework built upon pretrained DETR-based detectors which decouples localization stability and classification plasticity.<n>We show our method's ability to effectively balance stability and plasticity in PTMIOD, achieving robust cross-domain adaptation and strong retention of anti-forgetting capabilities.
- Score: 19.684132921720945
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The balance between stability and plasticity remains a fundamental challenge in pretrained model-based incremental object detection (PTMIOD). While existing PTMIOD methods demonstrate strong performance on in-domain tasks aligned with pretraining data, their plasticity to cross-domain scenarios remains underexplored. Through systematic component-wise analysis of pretrained detectors, we reveal a fundamental discrepancy: the localization modules demonstrate inherent cross-domain stability-preserving precise bounding box estimation across distribution shifts-while the classification components require enhanced plasticity to mitigate discriminability degradation in cross-domain scenarios. Motivated by these findings, we propose a dual-path framework built upon pretrained DETR-based detectors which decouples localization stability and classification plasticity: the localization path maintains stability to preserve pretrained localization knowledge, while the classification path facilitates plasticity via parameter-efficient fine-tuning and resists forgetting with pseudo-feature replay. Extensive evaluations on both in-domain (MS COCO and PASCAL VOC) and cross-domain (TT100K) benchmarks show state-of-the-art performance, demonstrating our method's ability to effectively balance stability and plasticity in PTMIOD, achieving robust cross-domain adaptation and strong retention of anti-forgetting capabilities.
Related papers
- Overlap-Aware Feature Learning for Robust Unsupervised Domain Adaptation for 3D Semantic Segmentation [9.578322021478426]
3D point cloud semantic segmentation (PCSS) is a cornerstone for environmental perception in robotic systems and autonomous driving.
Existing methods critically overlook the inherent vulnerability to real-world perturbations (e.g., snow, fog, rain) and adversarial distortions.
This work first identifies two intrinsic limitations that undermine current PCSS-UDA robustness.
We propose a tripartite framework consisting of: 1) a robustness evaluation model quantifying resilience against adversarial attack/corruption types through robustness metrics; 2) an invertible attention alignment module (IAAM) enabling bidirectional domain mapping while preserving discriminative structure via attention-guided overlap suppression; and
arXiv Detail & Related papers (2025-04-02T12:16:23Z) - Benchmarking the Spatial Robustness of DNNs via Natural and Adversarial Localized Corruptions [49.546479320670464]
This paper introduces specialized metrics for benchmarking the robustness of segmentation models under localized corruptions.<n>We propose region-aware multi-attack adversarial analysis, a method that enables a deeper understanding of model robustness against adversarial perturbations applied to specific regions.<n>The results reveal that models respond to these two types of threats differently.
arXiv Detail & Related papers (2025-04-02T11:37:39Z) - Robust Distribution Alignment for Industrial Anomaly Detection under Distribution Shift [51.24522135151649]
Anomaly detection plays a crucial role in quality control for industrial applications.<n>Existing methods attempt to address domain shifts by training generalizable models.<n>Our proposed method demonstrates superior results compared with state-of-the-art anomaly detection and domain adaptation methods.
arXiv Detail & Related papers (2025-03-19T05:25:52Z) - Representation-based Reward Modeling for Efficient Safety Alignment of Large Language Model [84.00480999255628]
Reinforcement Learning algorithms for safety alignment of Large Language Models (LLMs) encounter the challenge of distribution shift.<n>Current approaches typically address this issue through online sampling from the target policy.<n>We propose a new framework that leverages the model's intrinsic safety judgment capability to extract reward signals.
arXiv Detail & Related papers (2025-03-13T06:40:34Z) - DRIVE: Dual-Robustness via Information Variability and Entropic Consistency in Source-Free Unsupervised Domain Adaptation [10.127634263641877]
Adapting machine learning models to new domains without labeled data is a critical challenge in applications like medical imaging, autonomous driving, and remote sensing.<n>This task, known as Source-Free Unsupervised Domain Adaptation (SFUDA), involves adapting a pre-trained model to a target domain using only unlabeled target data.<n>Existing SFUDA methods often rely on single-model architectures, struggling with uncertainty and variability in the target domain.<n>We propose DRIVE, a novel SFUDA framework leveraging a dual-model architecture. The two models, with identical weights, work in parallel to capture diverse target domain characteristics.
arXiv Detail & Related papers (2024-11-24T20:35:04Z) - Exploring Test-Time Adaptation for Object Detection in Continually Changing Environments [13.163784646113214]
Continual Test-Time Adaptation (CTTA) has recently emerged as a promising technique to gradually adapt a source-trained model to continually changing target domains.
We present AMROD, featuring three core components. Firstly, the object-level contrastive learning module extracts object-level features for contrastive learning to refine the feature representation in the target domain.
Secondly, the adaptive monitoring module dynamically skips unnecessary adaptation and updates the category-specific threshold based on predicted confidence scores to enable efficiency and improve the quality of pseudo-labels.
arXiv Detail & Related papers (2024-06-24T08:30:03Z) - Stability Evaluation via Distributional Perturbation Analysis [28.379994938809133]
We propose a stability evaluation criterion based on distributional perturbations.
Our stability evaluation criterion can address both emphdata corruptions and emphsub-population shifts.
Empirically, we validate the practical utility of our stability evaluation criterion across a host of real-world applications.
arXiv Detail & Related papers (2024-05-06T06:47:14Z) - Towards Continual Learning Desiderata via HSIC-Bottleneck
Orthogonalization and Equiangular Embedding [55.107555305760954]
We propose a conceptually simple yet effective method that attributes forgetting to layer-wise parameter overwriting and the resulting decision boundary distortion.
Our method achieves competitive accuracy performance, even with absolute superiority of zero exemplar buffer and 1.02x the base model.
arXiv Detail & Related papers (2024-01-17T09:01:29Z) - DSD-DA: Distillation-based Source Debiasing for Domain Adaptive Object Detection [37.01880023537362]
We propose a novel Distillation-based Source Debiasing (DSD) framework for Domain Adaptive Object Detection (DAOD)
This framework distills domain-agnostic knowledge from a pre-trained teacher model, improving the detector's performance on both domains.
We also present a Domain-aware Consistency Enhancing (DCE) strategy, in which these information are formulated into a new localization representation.
arXiv Detail & Related papers (2023-11-17T10:26:26Z) - Effective Restoration of Source Knowledge in Continual Test Time
Adaptation [44.17577480511772]
This paper introduces an unsupervised domain change detection method that is capable of identifying domain shifts in dynamic environments.
By restoring the knowledge from the source, it effectively corrects the negative consequences arising from the gradual deterioration of model parameters.
We perform extensive experiments on benchmark datasets to demonstrate the superior performance of our method compared to state-of-the-art adaptation methods.
arXiv Detail & Related papers (2023-11-08T19:21:48Z) - Higher Performance Visual Tracking with Dual-Modal Localization [106.91097443275035]
Visual Object Tracking (VOT) has synchronous needs for both robustness and accuracy.
We propose a dual-modal framework for target localization, consisting of robust localization suppressingors via ONR and the accurate localization attending to the target center precisely via OFC.
arXiv Detail & Related papers (2021-03-18T08:47:56Z) - Distributional Robustness and Regularization in Reinforcement Learning [62.23012916708608]
We introduce a new regularizer for empirical value functions and show that it lower bounds the Wasserstein distributionally robust value function.
It suggests using regularization as a practical tool for dealing with $textitexternal uncertainty$ in reinforcement learning.
arXiv Detail & Related papers (2020-03-05T19:56:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.