論文の概要: Zero-shot Autonomous Microscopy for Scalable and Intelligent Characterization of 2D Materials
- arxiv url: http://arxiv.org/abs/2504.10281v1
- Date: Mon, 14 Apr 2025 14:49:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 16:55:41.718592
- Title: Zero-shot Autonomous Microscopy for Scalable and Intelligent Characterization of 2D Materials
- Title(参考訳): ゼロショット自律顕微鏡による2次元材料のスケーラブル・インテリジェントキャラクタリゼーション
- Authors: Jingyun Yang, Ruoyan Avery Yin, Chi Jiang, Yuepeng Hu, Xiaokai Zhu, Xingjian Hu, Sutharsika Kumar, Xiao Wang, Xiaohua Zhai, Keran Rong, Yunyue Zhu, Tianyi Zhang, Zongyou Yin, Jing Kong, Neil Zhenqiang Gong, Zhichu Ren, Haozhe Wang,
- Abstract要約: 従来、原子スケールの材料の特徴付けには、数ヶ月から数年の専門的な訓練を必要とする。
このボトルネックは、大規模なトレーニングデータセットを必要とせずに研究目的を理解できる完全自律的な実験システムへの需要を加速させる。
本稿では,2次元材料の完全自律的ゼロショットキャラクタリゼーションを実現するため,基礎モデルを統合するエンドツーエンドフレームワークであるATOMICを提案する。
- 参考スコア(独自算出の注目度): 41.856704526703595
- License:
- Abstract: Characterization of atomic-scale materials traditionally requires human experts with months to years of specialized training. Even for trained human operators, accurate and reliable characterization remains challenging when examining newly discovered materials such as two-dimensional (2D) structures. This bottleneck drives demand for fully autonomous experimentation systems capable of comprehending research objectives without requiring large training datasets. In this work, we present ATOMIC (Autonomous Technology for Optical Microscopy & Intelligent Characterization), an end-to-end framework that integrates foundation models to enable fully autonomous, zero-shot characterization of 2D materials. Our system integrates the vision foundation model (i.e., Segment Anything Model), large language models (i.e., ChatGPT), unsupervised clustering, and topological analysis to automate microscope control, sample scanning, image segmentation, and intelligent analysis through prompt engineering, eliminating the need for additional training. When analyzing typical MoS2 samples, our approach achieves 99.7% segmentation accuracy for single layer identification, which is equivalent to that of human experts. In addition, the integrated model is able to detect grain boundary slits that are challenging to identify with human eyes. Furthermore, the system retains robust accuracy despite variable conditions including defocus, color temperature fluctuations, and exposure variations. It is applicable to a broad spectrum of common 2D materials-including graphene, MoS2, WSe2, SnSe-regardless of whether they were fabricated via chemical vapor deposition or mechanical exfoliation. This work represents the implementation of foundation models to achieve autonomous analysis, establishing a scalable and data-efficient characterization paradigm that fundamentally transforms the approach to nanoscale materials research.
- Abstract(参考訳): 従来、原子スケールの材料の特徴付けには、数ヶ月から数年の専門的な訓練を必要とする。
訓練された人間のオペレーターであっても、二次元(2D)構造のような新たに発見された材料を調べる際には、正確で信頼性の高い特徴付けが困難である。
このボトルネックは、大規模なトレーニングデータセットを必要とせずに研究目的を理解できる完全自律的な実験システムへの需要を加速させる。
本稿では,2次元材料の完全自律的ゼロショットキャラクタリゼーションを実現するため,基礎モデルを統合するエンドツーエンドのフレームワークであるATOMICを紹介する。
本システムでは、視覚基盤モデル(セグメンテーションモデル)、大規模言語モデル(ChatGPT)、教師なしクラスタリング、トポロジカル分析を統合し、顕微鏡制御、サンプルスキャン、画像セグメンテーション、インテリジェント解析を即時エンジニアリングにより自動化し、追加トレーニングの必要性を排除している。
典型的なMoS2サンプルを解析すると, 単一層同定における99.7%のセグメンテーション精度が得られた。
さらに、統合されたモデルは、人間の目で識別するのが困難な粒界スリットを検出することができる。
さらに、デフォーカス、色温度変動、露光変動などの変動条件にもかかわらず、頑健な精度を維持している。
グラフェン、MoS2、WSe2、SnSeを含む一般的な2D素材の幅広いスペクトルに適用できる。
この研究は、自律的な分析を実現するための基礎モデルの実装を表しており、ナノスケール材料研究へのアプローチを根本的に変えるスケーラブルでデータ効率の良い評価パラダイムを確立している。
関連論文リスト
- MaskTerial: A Foundation Model for Automated 2D Material Flake Detection [48.73213960205105]
MaskTerialと呼ばれる深層学習モデルを提案する。このモデルでは、インスタンスセグメンテーションネットワークを用いて、2D素材のフレークを確実に識別する。
このモデルは、ラベルのないデータからリアルな顕微鏡画像を生成する合成データ生成装置を用いて、広範囲に事前訓練されている。
六方晶窒化ホウ素などの低コントラスト材料の検出において,既存の技術よりも顕著な改善が認められた。
論文 参考訳(メタデータ) (2024-12-12T15:01:39Z) - Foundational Model for Electron Micrograph Analysis: Instruction-Tuning Small-Scale Language-and-Vision Assistant for Enterprise Adoption [0.0]
半導体電子顕微鏡画像(MAEMI)解析のための小型フレームワークについて紹介する。
我々は、顕微鏡画像解析において、大規模なマルチモーダルモデルを用いて、カスタマイズされた命令追従データセットを生成する。
知識蒸留により,より大規模なモデルからより小さなモデルへの知識伝達を行い,視覚的質問応答タスクにおいて,より小さなモデルの精度を向上させる。
論文 参考訳(メタデータ) (2024-08-23T17:42:11Z) - Physics-Enhanced Multi-fidelity Learning for Optical Surface Imprint [1.0878040851638]
本稿では,MFNN(Multi-fidelity Neural Network)を用いた逆問題解法を提案する。
我々は、純粋なシミュレーションデータを通してNNモデルを構築し、次にトランスファーラーニングを介してsim-to-realギャップをブリッジする。
実際の実験データを収集することの難しさを考慮し、未知の物理を掘り出し、既知の物理を転写学習フレームワークに埋め込む。
論文 参考訳(メタデータ) (2023-11-17T01:55:15Z) - ChemVise: Maximizing Out-of-Distribution Chemical Detection with the
Novel Application of Zero-Shot Learning [60.02503434201552]
本研究は,簡単な学習セットから複雑な露光の学習近似を提案する。
合成センサ応答に対するこのアプローチは, 分布外の化学分析物の検出を驚くほど改善することを示した。
論文 参考訳(メタデータ) (2023-02-09T20:19:57Z) - Physics-informed machine learning with differentiable programming for
heterogeneous underground reservoir pressure management [64.17887333976593]
地下貯水池の過圧化を避けることは、CO2の沈殿や排水の注入といった用途に欠かせない。
地中における複雑な不均一性のため, 噴射・抽出制御による圧力管理は困難である。
過圧化防止のための流体抽出速度を決定するために、フル物理モデルと機械学習を用いた微分可能プログラミングを用いる。
論文 参考訳(メタデータ) (2022-06-21T20:38:13Z) - Tracking perovskite crystallization via deep learning-based feature
detection on 2D X-ray scattering data [137.47124933818066]
本稿では,より高速なR-CNN深層学習アーキテクチャに基づくX線回折画像の自動解析パイプラインを提案する。
有機-無機ペロブスカイト構造の結晶化をリアルタイムに追跡し, 2つの応用で検証した。
論文 参考訳(メタデータ) (2022-02-22T15:39:00Z) - Synthetic Image Rendering Solves Annotation Problem in Deep Learning
Nanoparticle Segmentation [5.927116192179681]
レンダリングソフトウェアを使用することで、リアルで合成されたトレーニングデータを生成して、最先端の深層ニューラルネットワークをトレーニングできることが示される。
有害な金属酸化物ナノ粒子アンサンブルに対する人為的アノテーションに匹敵するセグメンテーション精度を導出する。
論文 参考訳(メタデータ) (2020-11-20T17:05:36Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
我々は、人間の力で抽象化されたニューラルネットワークをデータレベルで注入できる新しい機械学習アーキテクチャを提案する。
具体的には、自然データと合成データに基づいて生成モデルを同時に訓練し、細胞数などの対象変数を確実に推定できる共有表現を学習する。
論文 参考訳(メタデータ) (2020-10-20T08:36:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。