論文の概要: Multimodal Representation Learning Techniques for Comprehensive Facial State Analysis
- arxiv url: http://arxiv.org/abs/2504.10351v1
- Date: Mon, 14 Apr 2025 16:00:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 16:51:20.937685
- Title: Multimodal Representation Learning Techniques for Comprehensive Facial State Analysis
- Title(参考訳): 総合的顔状態解析のためのマルチモーダル表現学習技術
- Authors: Kaiwen Zheng, Xuri Ge, Junchen Fu, Jun Peng, Joemon M. Jose,
- Abstract要約: マルチモーダル顔状態解析のための包括的パイプラインを提案する。
本稿では,アクション・ユニット(AU)と感情認識に適した,新しいマルチレベル・マルチモーダル・フェイス・ファンデーション・モデル(MF2)を提案する。
実験は、AUと感情検出タスクにおいて優れた性能を示す。
- 参考スコア(独自算出の注目度): 5.795431510723275
- License:
- Abstract: Multimodal foundation models have significantly improved feature representation by integrating information from multiple modalities, making them highly suitable for a broader set of applications. However, the exploration of multimodal facial representation for understanding perception has been limited. Understanding and analyzing facial states, such as Action Units (AUs) and emotions, require a comprehensive and robust framework that bridges visual and linguistic modalities. In this paper, we present a comprehensive pipeline for multimodal facial state analysis. First, we compile a new Multimodal Face Dataset (MFA) by generating detailed multilevel language descriptions of face, incorporating Action Unit (AU) and emotion descriptions, by leveraging GPT-4o. Second, we introduce a novel Multilevel Multimodal Face Foundation model (MF^2) tailored for Action Unit (AU) and emotion recognition. Our model incorporates comprehensive visual feature modeling at both local and global levels of face image, enhancing its ability to represent detailed facial appearances. This design aligns visual representations with structured AU and emotion descriptions, ensuring effective cross-modal integration. Third, we develop a Decoupled Fine-Tuning Network (DFN) that efficiently adapts MF^2 across various tasks and datasets. This approach not only reduces computational overhead but also broadens the applicability of the foundation model to diverse scenarios. Experimentation show superior performance for AU and emotion detection tasks.
- Abstract(参考訳): マルチモーダル基礎モデルは、複数のモーダルからの情報を統合することで、特徴表現を大幅に改善し、より広範なアプリケーションに非常に適している。
しかし、知覚の理解のためのマルチモーダル顔表現の探索は限られている。
アクション・ユニット(AU)や感情などの顔の状態を理解し分析するには、視覚的・言語的モダリティを橋渡しする包括的で堅牢な枠組みが必要である。
本稿では,マルチモーダル顔状態解析のための包括的パイプラインを提案する。
まず、GPT-4oを利用して、顔の詳細な多段階言語記述を生成し、アクションユニット(AU)と感情記述を組み込むことにより、新しいマルチモーダル顔データセット(MFA)をコンパイルする。
第2に、アクションユニット(AU)と感情認識に適した新しいマルチレベルマルチモーダルフェイスファウンデーションモデル(MF^2)を導入する。
本モデルでは,顔画像の局所的およびグローバルなレベルの包括的視覚特徴モデリングを導入し,顔の外観を詳細に表現する能力を向上させる。
このデザインは、視覚表現を構造化されたAUと感情記述と整合させ、効果的なクロスモーダル統合を保証する。
第三に、様々なタスクやデータセットにMF^2を効率よく適応するDecoupled Fine-Tuning Network (DFN) を開発した。
このアプローチは計算オーバーヘッドを減らすだけでなく、基礎モデルのさまざまなシナリオへの適用性も拡大します。
実験は、AUと感情検出タスクにおいて優れた性能を示す。
関連論文リスト
- Task Preference Optimization: Improving Multimodal Large Language Models with Vision Task Alignment [58.94611347128066]
タスク選好最適化(TPO)は、典型的なきめ細かい視覚的タスクから派生した微分可能なタスク選好を利用する新しい手法である。
トレーニング中にリッチなビジュアルラベルを活用することで、TPOはMLLMのマルチモーダル能力とタスク固有のパフォーマンスを大幅に向上させる。
VideoChatとLLaVAによるこのアプローチのインスタンス化は、ベースラインモデルと比較して、総合的に14.6%のマルチモーダル性能の向上を示している。
論文 参考訳(メタデータ) (2024-12-26T18:56:05Z) - EMMA: Efficient Visual Alignment in Multi-Modal LLMs [56.03417732498859]
EMMAは、視覚的およびテキスト的エンコーディングを効率的に融合するために設計された軽量なクロスプラットフォームモジュールである。
EMMAは複数のタスクのパフォーマンスを最大9.3%向上させ、幻覚に対する堅牢性を大幅に向上させる。
論文 参考訳(メタデータ) (2024-10-02T23:00:31Z) - SEED-X: Multimodal Models with Unified Multi-granularity Comprehension and Generation [61.392147185793476]
統一的で汎用的な基礎モデル、すなわちSEED-Xを提案する。
SEED-Xは、理解および生成タスクのための多粒度視覚意味論をモデル化することができる。
我々の研究が、現実世界のアプリケーションで多目的なマルチモーダル基盤モデルによって達成できるものについて、将来の研究に刺激を与えることを期待しています。
論文 参考訳(メタデータ) (2024-04-22T17:56:09Z) - Multi-modal Instruction Tuned LLMs with Fine-grained Visual Perception [63.03288425612792]
マルチモーダル参照から画素単位のオブジェクト認識と自然言語記述を生成できる汎用MLLMモデルであるbfAnyRefを提案する。
本モデルでは,領域レベルの参照表現生成とセグメンテーションの多様さを含む,複数のベンチマークにおける最先端結果を実現する。
論文 参考訳(メタデータ) (2024-03-05T13:45:46Z) - Jack of All Tasks, Master of Many: Designing General-purpose Coarse-to-Fine Vision-Language Model [83.85856356798531]
VistaLLMは、粗くきめ細かな視覚言語タスクに対処する視覚システムである。
2値分割マスクをシーケンスとして表現するために、勾配対応の適応サンプリング技術を採用している。
また、新しいタスクであるAttCoSegを導入し、複数の入力画像に対してモデルの推論とグラウンド化能力を高める。
論文 参考訳(メタデータ) (2023-12-19T18:53:01Z) - SPHINX: The Joint Mixing of Weights, Tasks, and Visual Embeddings for
Multi-modal Large Language Models [86.478087039015]
モデル重み、チューニングタスク、視覚埋め込みを併用した多目的多モード大言語モデル(MLLM)を提案する。
提案したジョイントミキシングに基づいて,高解像度画像のきめ細かい外観をより正確に捉えるための効率的な手法を提案する。
今後のMLLM研究におけるジョイントミキシングの探求に光を当てることを願っている。
論文 参考訳(メタデータ) (2023-11-13T18:59:47Z) - u-LLaVA: Unifying Multi-Modal Tasks via Large Language Model [17.3535277338312]
u-LLaVAは、MLLMの知覚能力を改善するためにピクセル、地域、グローバル機能を統合する革新的な統合マルチタスクフレームワークである。
この研究は、277Kサンプルからなるマスクベースの新しいマルチタスクデータセットに貢献し、MLLMの微粒化知覚能力に挑戦し評価する。
論文 参考訳(メタデータ) (2023-11-09T13:18:27Z) - Learning Robust Visual-Semantic Embedding for Generalizable Person
Re-identification [11.562980171753162]
一般化可能な人物識別(Re-ID)は、機械学習とコンピュータビジョンにおいて非常にホットな研究トピックである。
従来の手法は主に視覚表現学習に焦点をあてるが、訓練中の意味的特徴の可能性を検討することは無視される。
MMETと呼ばれるマルチモーダル等価変換器を提案し,より堅牢なビジュアル・セマンティックな埋め込み学習を実現する。
論文 参考訳(メタデータ) (2023-04-19T08:37:25Z) - Seeing What You Miss: Vision-Language Pre-training with Semantic
Completion Learning [22.464424641734652]
クロスモーダルアライメントは視覚言語事前学習モデルに不可欠である。
本研究では,グローバル・ローカル・アライメントを支援するセマンティック・コンプリート学習タスクを提案する。
また、フレキシブル・ビジョン・エンコーダを導入し、画像テキストとビデオテキストのマルチモーダルタスクを同時に実行できるようにした。
論文 参考訳(メタデータ) (2022-11-24T06:39:16Z) - MAMO: Masked Multimodal Modeling for Fine-Grained Vision-Language
Representation Learning [23.45678557013005]
そこで本研究では,細粒度マルチモーダル表現を学習するためのマスク付きマルチモーダルモデリング手法を提案する。
本手法は,画像テキスト入力において共同マスキングを行い,暗黙的および明示的の両方のターゲットを結合してマスク信号の復元を行う。
本モデルは,画像テキスト検索,視覚的質問応答,視覚的推論,弱教師付き視覚的グラウンドティングなど,さまざまな下流視覚言語タスクにおける最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2022-10-09T06:31:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。