Quantum Barcodes: Persistent Homology for Quantum Phase Transitions
- URL: http://arxiv.org/abs/2504.10468v1
- Date: Mon, 14 Apr 2025 17:53:21 GMT
- Title: Quantum Barcodes: Persistent Homology for Quantum Phase Transitions
- Authors: Khyathi Komalan,
- Abstract summary: We introduce "quantum barcodes," a theoretical framework that applies persistent homology to classify topological phases in quantum many-body systems.<n>By mapping quantum states to classical data points, we create a "quantum state cloud" analyzable via persistent homology techniques.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce "quantum barcodes," a theoretical framework that applies persistent homology to classify topological phases in quantum many-body systems. By mapping quantum states to classical data points through strategic observable measurements, we create a "quantum state cloud" analyzable via persistent homology techniques. Our framework establishes that quantum systems in the same topological phase exhibit consistent barcode representations with shared persistent homology groups over characteristic intervals. We prove that quantum phase transitions manifest as significant changes in these persistent homology features, detectable through discontinuities in the persistent Dirac operator spectrum. Using the SSH model as a demonstrative example, we show how our approach successfully identifies the topological phase transition and distinguishes between trivial and topological phases. While primarily developed for symmetry-protected topological phases, our framework provides a mathematical connection between persistent homology and quantum topology, offering new methods for phase classification that complement traditional invariant-based approaches.
Related papers
- Variational Quantum Simulation of the Interacting Schwinger Model on a Trapped-Ion Quantum Processor [26.47874938214435]
In this work, we explore the multi-flavor lattice Schwinger model - a toy model inspired by quantum chromodynamics.
We employ a parametric quantum circuit executed on our quantum processor to identify ground states in different parameter regimes of the model.
The resulting states are analyzed via quantum state tomography, to reveal how characteristic properties such as correlations in the output state change.
arXiv Detail & Related papers (2025-04-29T14:43:57Z) - Topological transition between gapless phases in quantum walks [0.0]
Topological gapless phases of matter have been a recent interest among theoretical and experimental condensed matter physicists.<n>We show that such topological gapless phases and the transition between them can be simulated in a quantum walk.
arXiv Detail & Related papers (2025-04-07T12:48:12Z) - Robust Simulations of Many-Body Symmetry-Protected Topological Phase Transitions on a Quantum Processor [7.515748475237134]
Topology and symmetry play critical roles in characterizing quantum phases of matter.<n>Recent advancements have unveiled symmetry-protected topological (SPT) phases in many-body systems.<n>We demonstrate the robust simulation of many-body ground states of an Ising-cluster model on a quantum computer.
arXiv Detail & Related papers (2025-03-11T18:00:02Z) - A New Framework for Quantum Phases in Open Systems: Steady State of Imaginary-Time Lindbladian Evolution [18.47824812164327]
We introduce the concept of imaginary-time Lindbladian evolution as an alternative framework.
This new approach defines gapped quantum phases in open systems through the spectrum properties of the imaginary-Liouville superoperator.
arXiv Detail & Related papers (2024-08-06T14:53:40Z) - Quantum reservoir probing of quantum phase transitions [0.0]
We show that quantum phase transitions can be detected through localized out-of-equilibrium excitations induced by local quantum quenches.<n>The impacts of the local quenches vary across different quantum phases and are significantly suppressed by quantum fluctuations amplified near quantum critical points.<n>We demonstrate that the QRP can detect quantum phase transitions in the paradigmatic integrable and nonintegrable quantum spin systems, and even topological quantum phase transitions.
arXiv Detail & Related papers (2024-02-11T03:53:01Z) - Unravelling Metastable Markovian Open Quantum Systems [0.0]
We analyse the dynamics of metastable Markovian open quantum systems by unravelling their average dynamics into trajectories.
We use quantum reset processes as examples to illustrate metastable phenomenology.
arXiv Detail & Related papers (2023-08-27T13:46:24Z) - Spread Complexity and Topological Transitions in the Kitaev Chain [1.4973636284231042]
We use a 1-dimensional p-wave superconductor as a prototype of a system displaying a topological phase transition.
The Hamiltonian of the Kitaev chain manifests two gapped phases of matter with fermion parity symmetry.
We show that Krylov-complexity is able to distinguish between the two and provides a diagnostic of the quantum critical point that separates them.
arXiv Detail & Related papers (2022-08-12T14:52:28Z) - Probing Topological Spin Liquids on a Programmable Quantum Simulator [40.96261204117952]
We use a 219-atom programmable quantum simulator to probe quantum spin liquid states.
In our approach, arrays of atoms are placed on the links of a kagome lattice and evolution under Rydberg blockade creates frustrated quantum states.
The onset of a quantum spin liquid phase of the paradigmatic toric code type is detected by evaluating topological string operators.
arXiv Detail & Related papers (2021-04-09T00:18:12Z) - Observing a Topological Transition in Weak-Measurement-Induced Geometric
Phases [55.41644538483948]
Weak measurements in particular, through their back-action on the system, may enable various levels of coherent control.
We measure the geometric phases induced by sequences of weak measurements and demonstrate a topological transition in the geometric phase controlled by measurement strength.
Our results open new horizons for measurement-enabled quantum control of many-body topological states.
arXiv Detail & Related papers (2021-02-10T19:00:00Z) - Digital Quantum Simulation of Floquet Topological Phases with a
Solid-State Quantum Simulator [13.134817887361317]
We develop and experimentally realize the digital quantum simulation of topological phase with a solid-state quantum simulator at room temperature.
We also illustrate the procedure of digitally simulating a quantum quench and observing the nonequilibrium dynamics of Floquet topological phases.
arXiv Detail & Related papers (2020-12-10T07:42:39Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Signatures of topology in quantum quench dynamics and their
interrelation [0.0]
We study the conditions for the appearance of entanglement spectrum crossings, dynamical quantum phase transitions, and dynamical Chern numbers.
For non-interacting models, we show that in general there is no direct relation between these three quantities.
arXiv Detail & Related papers (2020-03-17T18:15:36Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z) - Detecting dynamical quantum phase transition via out-of-time-order
correlations in a solid-state quantum simulator [12.059058714600607]
We develop and experimentally demonstrate that out-of-time-order correlators can be used to detect nonoequilibrium phase transitions in the transverse field Ising model.
Further applications of this protocol could enable studies other of exotic phenomena such as many body localization, and tests of the holographic duality between quantum and gravitational systems.
arXiv Detail & Related papers (2020-01-17T14:28:42Z) - Bulk detection of time-dependent topological transitions in quenched
chiral models [48.7576911714538]
We show that the winding number of the Hamiltonian eigenstates can be read-out by measuring the mean chiral displacement of a single-particle wavefunction.
This implies that the mean chiral displacement can detect the winding number even when the underlying Hamiltonian is quenched between different topological phases.
arXiv Detail & Related papers (2020-01-16T17:44:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.