Robust Simulations of Many-Body Symmetry-Protected Topological Phase Transitions on a Quantum Processor
- URL: http://arxiv.org/abs/2503.08776v1
- Date: Tue, 11 Mar 2025 18:00:02 GMT
- Title: Robust Simulations of Many-Body Symmetry-Protected Topological Phase Transitions on a Quantum Processor
- Authors: Ruizhe Shen, Tianqi Chen, Bo Yang, Yin Zhong, Ching Hua Lee,
- Abstract summary: Topology and symmetry play critical roles in characterizing quantum phases of matter.<n>Recent advancements have unveiled symmetry-protected topological (SPT) phases in many-body systems.<n>We demonstrate the robust simulation of many-body ground states of an Ising-cluster model on a quantum computer.
- Score: 7.515748475237134
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Topology and symmetry play critical roles in characterizing quantum phases of matter. Recent advancements have unveiled symmetry-protected topological (SPT) phases in many-body systems as a unique class of short-range entangled states, notable for their nontrivial edge modes and characteristic ground-state entanglement gap. In this study, we demonstrate the robust simulation of many-body ground states of an Ising-cluster model on a quantum computer. By employing the method of quantum imaginary-time evolution (QITE) combined with enhanced zero-noise extrapolation techniques, we achieve accurate measurements of the transition between trivial and cluster SPT phases. Furthermore, we measured the characteristic edge modes and their associated topological entanglement properties, such as the second R\'enyi entropy, reduced density matrix, and entanglement spectral gap. Our work demonstrates the potential of using QITE in investigating sophisticated quantum phase transitions and critical phenomena on quantum computers.
Related papers
- Variational Quantum Simulation of the Interacting Schwinger Model on a Trapped-Ion Quantum Processor [26.47874938214435]
In this work, we explore the multi-flavor lattice Schwinger model - a toy model inspired by quantum chromodynamics.
We employ a parametric quantum circuit executed on our quantum processor to identify ground states in different parameter regimes of the model.
The resulting states are analyzed via quantum state tomography, to reveal how characteristic properties such as correlations in the output state change.
arXiv Detail & Related papers (2025-04-29T14:43:57Z) - Quantum metrological capability as a probe for quantum phase transition [1.5574423250822542]
The metrological capability quantified by the quantum Fisher information captivatingly shows an unique peak in the vicinity of the quantum critical point.
We show that the probing can be implemented by extracting quantum fluctuations of the interferometric generator.
arXiv Detail & Related papers (2024-08-19T08:18:03Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Probing Confinement Through Dynamical Quantum Phase Transitions: From
Quantum Spin Models to Lattice Gauge Theories [0.0]
We show that a change in the type of dynamical quantum phase transitions accompanies the confinement-deconfinement transition.
Our conclusions can be tested in modern quantum-simulation platforms, such as ion-trap setups and cold-atom experiments of gauge theories.
arXiv Detail & Related papers (2023-10-18T18:00:04Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Realizing symmetry-protected topological phases in a spin-1/2 chain with
next-nearest neighbor hopping on superconducting qubits [0.0]
We report the realization of symmetry-protected topological phases of a spin-1/2 Hamiltonian with next-nearest-neighbor hopping on up to 11 qubits.
Our work advances ongoing efforts to realize novel states of matter with exotic interactions on digital near-term quantum computers.
arXiv Detail & Related papers (2021-12-20T04:40:41Z) - Learning quantum phases via single-qubit disentanglement [4.266508670102269]
We present a novel and efficient quantum phase transition, utilizing disentanglement with reinforcement learning-optimized variational quantum circuits.
Our approach not only identifies phase transitions based on the performance of the disentangling circuits but also exhibits impressive scalability, facilitating its application in larger and more complex quantum systems.
arXiv Detail & Related papers (2021-07-08T00:15:31Z) - Probing Topological Spin Liquids on a Programmable Quantum Simulator [40.96261204117952]
We use a 219-atom programmable quantum simulator to probe quantum spin liquid states.
In our approach, arrays of atoms are placed on the links of a kagome lattice and evolution under Rydberg blockade creates frustrated quantum states.
The onset of a quantum spin liquid phase of the paradigmatic toric code type is detected by evaluating topological string operators.
arXiv Detail & Related papers (2021-04-09T00:18:12Z) - Probing quantum information propagation with out-of-time-ordered
correlators [41.12790913835594]
Small-scale quantum information processors hold the promise to efficiently emulate many-body quantum systems.
Here, we demonstrate the measurement of out-of-time-ordered correlators (OTOCs)
A central requirement for our experiments is the ability to coherently reverse time evolution.
arXiv Detail & Related papers (2021-02-23T15:29:08Z) - Quantum Phases of Matter on a 256-Atom Programmable Quantum Simulator [41.74498230885008]
We demonstrate a programmable quantum simulator based on deterministically prepared two-dimensional arrays of neutral atoms.
We benchmark the system by creating and characterizing high-fidelity antiferromagnetically ordered states.
We then create and study several new quantum phases that arise from the interplay between interactions and coherent laser excitation.
arXiv Detail & Related papers (2020-12-22T19:00:04Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Digital Simulation of Topological Matter on Programmable Quantum
Processors [0.0]
We propose and demonstrate an approach to design topologically protected quantum circuits on the current generation of noisy quantum processors.
In particular, a low-depth topological quantum circuit is performed on both IBM and Rigetti quantum processors.
arXiv Detail & Related papers (2020-03-13T02:32:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.