PinRec: Outcome-Conditioned, Multi-Token Generative Retrieval for Industry-Scale Recommendation Systems
- URL: http://arxiv.org/abs/2504.10507v2
- Date: Tue, 29 Apr 2025 21:06:10 GMT
- Title: PinRec: Outcome-Conditioned, Multi-Token Generative Retrieval for Industry-Scale Recommendation Systems
- Authors: Anirudhan Badrinath, Prabhat Agarwal, Laksh Bhasin, Jaewon Yang, Jiajing Xu, Charles Rosenberg,
- Abstract summary: This paper introduces PinRec, a novel generative retrieval model developed for applications at Pinterest.<n>Our experiments demonstrate that PinRec can successfully balance performance, diversity, and efficiency, delivering a significant positive impact to users.
- Score: 6.738040775297612
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative retrieval methods utilize generative sequential modeling techniques, such as transformers, to generate candidate items for recommender systems. These methods have demonstrated promising results in academic benchmarks, surpassing traditional retrieval models like two-tower architectures. However, current generative retrieval methods lack the scalability required for industrial recommender systems, and they are insufficiently flexible to satisfy the multiple metric requirements of modern systems. This paper introduces PinRec, a novel generative retrieval model developed for applications at Pinterest. PinRec utilizes outcome-conditioned generation, enabling modelers to specify how to balance various outcome metrics, such as the number of saves and clicks, to effectively align with business goals and user exploration. Additionally, PinRec incorporates multi-token generation to enhance output diversity while optimizing generation. Our experiments demonstrate that PinRec can successfully balance performance, diversity, and efficiency, delivering a significant positive impact to users using generative models. This paper marks a significant milestone in generative retrieval, as it presents, to our knowledge, the first rigorous study on implementing generative retrieval at the scale of Pinterest.
Related papers
- Exploring Training and Inference Scaling Laws in Generative Retrieval [50.82554729023865]
We investigate how model size, training data scale, and inference-time compute jointly influence generative retrieval performance.<n>Our experiments show that n-gram-based methods demonstrate strong alignment with both training and inference scaling laws.<n>We find that LLaMA models consistently outperform T5 models, suggesting a particular advantage for larger decoder-only models in generative retrieval.
arXiv Detail & Related papers (2025-03-24T17:59:03Z) - OneRec: Unifying Retrieve and Rank with Generative Recommender and Iterative Preference Alignment [9.99840965933561]
We propose OneRec, which replaces the cascaded learning framework with a unified generative model.<n>OneRec includes: 1) an encoder-decoder structure, which encodes the user's historical behavior sequences and gradually decodes the videos that the user may be interested in.
arXiv Detail & Related papers (2025-02-26T09:25:10Z) - Unifying Generative and Dense Retrieval for Sequential Recommendation [37.402860622707244]
We propose LIGER, a hybrid model that combines the strengths of sequential dense retrieval and generative retrieval.
LIGER integrates sequential dense retrieval into generative retrieval, mitigating performance differences and enhancing cold-start item recommendation.
This hybrid approach provides insights into the trade-offs between these approaches and demonstrates improvements in efficiency and effectiveness for recommendation systems in small-scale benchmarks.
arXiv Detail & Related papers (2024-11-27T23:36:59Z) - Inductive Generative Recommendation via Retrieval-based Speculation [26.70518822003545]
Generative recommendation (GR) is an emerging paradigm that tokenizes items into discrete tokens and learns to autoregressively generate the next tokens as predictions.
In this paper, we propose SpecGR, a plug-and-play framework that enables GR models to recommend new items in an inductive setting.
arXiv Detail & Related papers (2024-10-03T19:32:32Z) - A Review of Modern Recommender Systems Using Generative Models (Gen-RecSys) [57.30228361181045]
This survey connects key advancements in recommender systems using Generative Models (Gen-RecSys)
It covers: interaction-driven generative models; the use of large language models (LLM) and textual data for natural language recommendation; and the integration of multimodal models for generating and processing images/videos in RS.
Our work highlights necessary paradigms for evaluating the impact and harm of Gen-RecSys and identifies open challenges.
arXiv Detail & Related papers (2024-03-31T06:57:57Z) - Non-autoregressive Generative Models for Reranking Recommendation [9.854541524740549]
In a recommendation system, reranking plays a crucial role by modeling the intra-list correlations among items.<n>We propose a Non-AutoRegressive generative model for reranking Recommendation (NAR4Rec) designed to enhance efficiency and effectiveness.<n> NAR4Rec has been fully deployed in a popular video app Kuaishou with over 300 million daily active users.
arXiv Detail & Related papers (2024-02-10T03:21:13Z) - DNS-Rec: Data-aware Neural Architecture Search for Recommender Systems [79.76519917171261]
This paper addresses the computational overhead and resource inefficiency prevalent in Sequential Recommender Systems (SRSs)<n>We introduce an innovative approach combining pruning methods with advanced model designs.<n>Our principal contribution is the development of a Data-aware Neural Architecture Search for Recommender System (DNS-Rec)
arXiv Detail & Related papers (2024-02-01T07:22:52Z) - Ada-Retrieval: An Adaptive Multi-Round Retrieval Paradigm for Sequential
Recommendations [50.03560306423678]
We propose Ada-Retrieval, an adaptive multi-round retrieval paradigm for recommender systems.
Ada-Retrieval iteratively refines user representations to better capture potential candidates in the full item space.
arXiv Detail & Related papers (2024-01-12T15:26:40Z) - Learning to Rank in Generative Retrieval [62.91492903161522]
Generative retrieval aims to generate identifier strings of relevant passages as the retrieval target.
We propose a learning-to-rank framework for generative retrieval, dubbed LTRGR.
This framework only requires an additional learning-to-rank training phase to enhance current generative retrieval systems.
arXiv Detail & Related papers (2023-06-27T05:48:14Z) - On the Robustness of Generative Retrieval Models: An Out-of-Distribution
Perspective [65.16259505602807]
We study the robustness of generative retrieval models against dense retrieval models.
The empirical results indicate that the OOD robustness of generative retrieval models requires enhancement.
arXiv Detail & Related papers (2023-06-22T09:18:52Z) - IRGen: Generative Modeling for Image Retrieval [82.62022344988993]
In this paper, we present a novel methodology, reframing image retrieval as a variant of generative modeling.
We develop our model, dubbed IRGen, to address the technical challenge of converting an image into a concise sequence of semantic units.
Our model achieves state-of-the-art performance on three widely-used image retrieval benchmarks and two million-scale datasets.
arXiv Detail & Related papers (2023-03-17T17:07:36Z) - DORE: Document Ordered Relation Extraction based on Generative Framework [56.537386636819626]
This paper investigates the root cause of the underwhelming performance of the existing generative DocRE models.
We propose to generate a symbolic and ordered sequence from the relation matrix which is deterministic and easier for model to learn.
Experimental results on four datasets show that our proposed method can improve the performance of the generative DocRE models.
arXiv Detail & Related papers (2022-10-28T11:18:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.