Enhancing Image Restoration through Learning Context-Rich and Detail-Accurate Features
- URL: http://arxiv.org/abs/2504.10558v1
- Date: Mon, 14 Apr 2025 14:46:10 GMT
- Title: Enhancing Image Restoration through Learning Context-Rich and Detail-Accurate Features
- Authors: Hu Gao, Depeng Dang,
- Abstract summary: We present a multi-scale design that optimally balances competing objectives, seamlessly integrating spatial and frequency domain knowledge.<n>Specifically, we develop a hybrid scale frequency selection block (HSFSBlock), which not only captures multi-scale information from the spatial domain, but also selects the most informative components for image restoration in the frequency domain.<n>Our model attains performance levels that are either superior or comparable to those of state-of-the-art algorithms.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image restoration involves recovering high-quality images from their corrupted versions, requiring a nuanced balance between spatial details and contextual information. While certain methods address this balance, they predominantly emphasize spatial aspects, neglecting frequency variation comprehension. In this paper, we present a multi-scale design that optimally balances these competing objectives, seamlessly integrating spatial and frequency domain knowledge to selectively recover the most informative information. Specifically, we develop a hybrid scale frequency selection block (HSFSBlock), which not only captures multi-scale information from the spatial domain, but also selects the most informative components for image restoration in the frequency domain. Furthermore, to mitigate the inherent noise introduced by skip connections employing only addition or concatenation, we introduce a skip connection attention mechanism (SCAM) to selectively determines the information that should propagate through skip connections. The resulting tightly interlinked architecture, named as LCDNet. Extensive experiments conducted across diverse image restoration tasks showcase that our model attains performance levels that are either superior or comparable to those of state-of-the-art algorithms.
Related papers
- Any Image Restoration via Efficient Spatial-Frequency Degradation Adaptation [158.37640586809187]
Restoring any degraded image efficiently via just one model has become increasingly significant.
Our approach, termed AnyIR, takes a unified path that leverages inherent similarity across various degradations.
To fuse the degradation awareness and the contextualized attention, a spatial-frequency parallel fusion strategy is proposed.
arXiv Detail & Related papers (2025-04-19T09:54:46Z) - Exploring Richer and More Accurate Information via Frequency Selection for Image Restoration [0.0]
We introduce a multi-scale frequency selection network (MSFSNet) that seamlessly integrates spatial and frequency domain knowledge.
Our MSFSNet achieves performance that is either superior or comparable to state-of-the-art algorithms.
arXiv Detail & Related papers (2024-07-12T03:10:08Z) - A Mountain-Shaped Single-Stage Network for Accurate Image Restoration [9.431709365739462]
In image restoration, it is typically necessary to maintain a complex balance between spatial details and contextual information.
We propose a single-stage design base on a simple U-Net architecture, which removes or replaces unnecessary nonlinear activation functions.
Our approach, named as M3SNet, outperforms previous state-of-the-art models while using less than half the computational costs.
arXiv Detail & Related papers (2023-05-09T03:18:35Z) - Mixed Hierarchy Network for Image Restoration [0.0]
We present a mixed hierarchy network that can balance quality and system complexity in image restoration.
Our model first learns the contextual information using encoder-decoder architectures, and then combines them with high-resolution branches that preserve spatial detail.
The resulting tightly interlinked hierarchy architecture, named as MHNet, delivers strong performance gains on several image restoration tasks.
arXiv Detail & Related papers (2023-02-19T12:18:45Z) - Rank-Enhanced Low-Dimensional Convolution Set for Hyperspectral Image
Denoising [50.039949798156826]
This paper tackles the challenging problem of hyperspectral (HS) image denoising.
We propose rank-enhanced low-dimensional convolution set (Re-ConvSet)
We then incorporate Re-ConvSet into the widely-used U-Net architecture to construct an HS image denoising method.
arXiv Detail & Related papers (2022-07-09T13:35:12Z) - Learning Enriched Features for Fast Image Restoration and Enhancement [166.17296369600774]
This paper presents a holistic goal of maintaining spatially-precise high-resolution representations through the entire network.
We learn an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
Our approach achieves state-of-the-art results for a variety of image processing tasks, including defocus deblurring, image denoising, super-resolution, and image enhancement.
arXiv Detail & Related papers (2022-04-19T17:59:45Z) - Spatially-Adaptive Image Restoration using Distortion-Guided Networks [51.89245800461537]
We present a learning-based solution for restoring images suffering from spatially-varying degradations.
We propose SPAIR, a network design that harnesses distortion-localization information and dynamically adjusts to difficult regions in the image.
arXiv Detail & Related papers (2021-08-19T11:02:25Z) - Multi-Stage Progressive Image Restoration [167.6852235432918]
We propose a novel synergistic design that can optimally balance these competing goals.
Our main proposal is a multi-stage architecture, that progressively learns restoration functions for the degraded inputs.
The resulting tightly interlinked multi-stage architecture, named as MPRNet, delivers strong performance gains on ten datasets.
arXiv Detail & Related papers (2021-02-04T18:57:07Z) - Deep Burst Super-Resolution [165.90445859851448]
We propose a novel architecture for the burst super-resolution task.
Our network takes multiple noisy RAW images as input, and generates a denoised, super-resolved RGB image as output.
In order to enable training and evaluation on real-world data, we additionally introduce the BurstSR dataset.
arXiv Detail & Related papers (2021-01-26T18:57:21Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task.
We present a novel architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network.
Our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
arXiv Detail & Related papers (2020-03-15T11:04:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.