論文の概要: Data Augmentation Through Random Style Replacement
- arxiv url: http://arxiv.org/abs/2504.10563v1
- Date: Mon, 14 Apr 2025 16:46:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-16 22:10:13.343163
- Title: Data Augmentation Through Random Style Replacement
- Title(参考訳): ランダムスタイルの置き換えによるデータ拡張
- Authors: Qikai Yang, Cheng Ji, Huaiying Luo, Panfeng Li, Zhicheng Ding,
- Abstract要約: スタイル拡張とランダム消去の利点を組み合わせた新しいデータ拡張手法を提案する。
提案手法はまず,まずトレーニング画像にランダムなスタイル転送を適用し,次に,これらの画像の中から選択された領域を,スタイル変換されたバージョンから派生したパッチでランダムに置き換える。
- 参考スコア(独自算出の注目度): 1.3816838580887625
- License:
- Abstract: In this paper, we introduce a novel data augmentation technique that combines the advantages of style augmentation and random erasing by selectively replacing image subregions with style-transferred patches. Our approach first applies a random style transfer to training images, then randomly substitutes selected areas of these images with patches derived from the style-transferred versions. This method is able to seamlessly accommodate a wide range of existing style transfer algorithms and can be readily integrated into diverse data augmentation pipelines. By incorporating our strategy, the training process becomes more robust and less prone to overfitting. Comparative experiments demonstrate that, relative to previous style augmentation methods, our technique achieves superior performance and faster convergence.
- Abstract(参考訳): 本稿では,画像サブリージョンをスタイル変換パッチに選択的に置き換えることで,スタイル拡張とランダム消去の利点を組み合わせた新しいデータ拡張手法を提案する。
提案手法はまず,まずトレーニング画像にランダムなスタイル転送を適用し,次に,これらの画像の中から選択された領域を,スタイル変換されたバージョンから派生したパッチでランダムに置き換える。
この手法は、様々なスタイル転送アルゴリズムをシームレスに適合させ、多様なデータ拡張パイプラインに容易に組み込むことができる。
私たちの戦略を取り入れることで、トレーニングプロセスはより堅牢になり、過度に適合する傾向が低下します。
比較実験により,従来の手法と比較して,本手法は優れた性能とより高速な収束を実現することが示された。
関連論文リスト
- Style Injection in Diffusion: A Training-free Approach for Adapting Large-scale Diffusion Models for Style Transfer [19.355744690301403]
本研究では,事前学習した大規模拡散モデルに基づく新たな芸術的スタイル伝達手法を提案する。
実験の結果,提案手法は従来の手法と拡散型方式の両方で最先端の手法を超越していることがわかった。
論文 参考訳(メタデータ) (2023-12-11T09:53:12Z) - Retinex-guided Channel-grouping based Patch Swap for Arbitrary Style
Transfer [54.25418866649519]
パッチマッチングベースのスタイル転送の基本原理は、コンテンツ画像特徴マップのパッチを、スタイル画像特徴マップから最も近いパッチで置き換えることである。
既存の手法では、全チャネルスタイルの特徴パッチを単純な信号テンソルとして扱い、信号レベル融合による新しいスタイルの特徴パッチを作成する。
本稿では、上記の課題を解決するために、チャネルグループベースのパッチスワップスワップ技術であるRetinex理論を提案する。
論文 参考訳(メタデータ) (2023-09-19T11:13:56Z) - Improving the Transferability of Adversarial Examples with Arbitrary
Style Transfer [32.644062141738246]
スタイル転送ネットワークは、人間の意味的内容を保持しながら、画像内の低レベルの視覚的特徴の分布を変更することができる。
本稿では、任意のスタイル転送ネットワークを用いて、画像を異なる領域に変換する新たな攻撃手法であるStyle Transfer Method (STM)を提案する。
提案手法は、通常訓練されたモデルまたは逆訓練されたモデルにおいて、逆変換性を大幅に向上させることができる。
論文 参考訳(メタデータ) (2023-08-21T09:58:13Z) - A Unified Arbitrary Style Transfer Framework via Adaptive Contrastive
Learning [84.8813842101747]
Unified Contrastive Arbitrary Style Transfer (UCAST)は、新しいスタイルの学習・伝達フレームワークである。
入力依存温度を導入することで,スタイル伝達のための適応型コントラスト学習方式を提案する。
本フレームワークは,スタイル表現とスタイル伝達のための並列コントラスト学習方式,スタイル分布を効果的に学習するためのドメイン拡張モジュール,スタイル伝達のための生成ネットワークという,3つの重要なコンポーネントから構成される。
論文 参考訳(メタデータ) (2023-03-09T04:35:00Z) - Domain Enhanced Arbitrary Image Style Transfer via Contrastive Learning [84.8813842101747]
Contrastive Arbitrary Style Transfer (CAST) は、新しいスタイル表現学習法である。
本フレームワークは,スタイルコード符号化のための多層スタイルプロジェクタ,スタイル分布を効果的に学習するためのドメイン拡張モジュール,画像スタイル転送のための生成ネットワークという,3つのキーコンポーネントから構成される。
論文 参考訳(メタデータ) (2022-05-19T13:11:24Z) - Adaptive Image Transformations for Transfer-based Adversarial Attack [73.74904401540743]
適応画像変換学習(AITL)と呼ばれる新しいアーキテクチャを提案する。
精巧に設計した学習者は、入力画像固有の画像変換の最も効果的な組み合わせを適応的に選択する。
本手法は、通常訓練されたモデルと防衛モデルの両方において、各種設定下での攻撃成功率を大幅に向上させる。
論文 参考訳(メタデータ) (2021-11-27T08:15:44Z) - FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning [64.32306537419498]
本稿では,複雑な変換を多様に生成する特徴量に基づく改良・拡張手法を提案する。
これらの変換は、クラスタリングを通じて抽出したクラス内およびクラス間の両方の情報も利用します。
提案手法は,大規模データセットにスケールアップしながら,より小さなデータセットに対して,現在の最先端技術に匹敵するものであることを実証する。
論文 参考訳(メタデータ) (2020-07-16T17:55:31Z) - Parameter-Free Style Projection for Arbitrary Style Transfer [64.06126075460722]
本稿では,パラメータフリー,高速,効果的なコンテンツスタイル変換のための特徴レベル変換手法であるStyle Projectionを提案する。
本稿では、任意の画像スタイルの転送にスタイル投影を利用するリアルタイムフィードフォワードモデルを提案する。
論文 参考訳(メタデータ) (2020-03-17T13:07:41Z) - P$^2$-GAN: Efficient Style Transfer Using Single Style Image [2.703193151632043]
スタイル転送は、与えられた画像を別の芸術的なスタイルに再レンダリングできる便利な画像合成技術である。
Generative Adversarial Network(GAN)は、ローカルスタイルパターンの表現能力を向上するために、このタスクに対して広く採用されているフレームワークである。
本稿では,ワンスタイル画像からストロークスタイルを効率的に学習できる新しいPatch Permutation GAN(P$2$-GAN)ネットワークを提案する。
論文 参考訳(メタデータ) (2020-01-21T12:08:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。