FuzzSense: Towards A Modular Fuzzing Framework for Autonomous Driving Software
- URL: http://arxiv.org/abs/2504.10717v1
- Date: Mon, 14 Apr 2025 21:17:46 GMT
- Title: FuzzSense: Towards A Modular Fuzzing Framework for Autonomous Driving Software
- Authors: Andrew Roberts, Lorenz Teply, Mert D. Pese, Olaf Maennel, Mohammad Hamad, Sebastian Steinhorst,
- Abstract summary: This research proposes FuzzSense, a modular, black-box, mutation-based fuzzing framework that is architected to ensemble diverse AD fuzzing tools.<n>To validate the utility of FuzzSense, a LiDAR sensor fuzzer was developed as a plug-in, and the fuzzer was implemented in the new AD simulation platform AWSIM and Autoware.Universe AD software platform.
- Score: 1.3359321655273804
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fuzz testing to find semantic control vulnerabilities is an essential activity to evaluate the robustness of autonomous driving (AD) software. Whilst there is a preponderance of disparate fuzzing tools that target different parts of the test environment, such as the scenario, sensors, and vehicle dynamics, there is a lack of fuzzing strategies that ensemble these fuzzers to enable concurrent fuzzing, utilizing diverse techniques and targets. This research proposes FuzzSense, a modular, black-box, mutation-based fuzzing framework that is architected to ensemble diverse AD fuzzing tools. To validate the utility of FuzzSense, a LiDAR sensor fuzzer was developed as a plug-in, and the fuzzer was implemented in the new AD simulation platform AWSIM and Autoware.Universe AD software platform. The results demonstrated that FuzzSense was able to find vulnerabilities in the new Autoware.Universe software. We contribute to FuzzSense open-source with the aim of initiating a conversation in the community on the design of AD-specific fuzzers and the establishment of a community fuzzing framework to better target the diverse technology base of autonomous vehicles.
Related papers
- CKGFuzzer: LLM-Based Fuzz Driver Generation Enhanced By Code Knowledge Graph [29.490817477791357]
We propose an automated fuzz testing method driven by a code knowledge graph and powered by an intelligent agent system.<n>The code knowledge graph is constructed through interprocedural program analysis, where each node in the graph represents a code entity.<n> CKGFuzzer achieved an average improvement of 8.73% in code coverage compared to state-of-the-art techniques.
arXiv Detail & Related papers (2024-11-18T12:41:16Z) - FuzzWiz -- Fuzzing Framework for Efficient Hardware Coverage [2.1626093085892144]
We create an automated hardware fuzzing framework called FuzzWiz.
It includes parsing the RTL design module, converting it into C/C++ models, creating generic testbench with assertions, linking, and fuzzing.
Our benchmarking results show that we could achieve around 90% of the coverage 10 times faster than traditional simulation regression based approach.
arXiv Detail & Related papers (2024-10-23T10:06:08Z) - CAFuser: Condition-Aware Multimodal Fusion for Robust Semantic Perception of Driving Scenes [56.52618054240197]
We propose a novel, condition-aware multimodal fusion approach for robust semantic perception of driving scenes.<n>Our method, CAFuser, uses an RGB camera input to classify environmental conditions and generate a Condition Token.<n>Our model significantly improves robustness and accuracy, especially in adverse-condition scenarios.
arXiv Detail & Related papers (2024-10-14T17:56:20Z) - G-Fuzz: A Directed Fuzzing Framework for gVisor [48.85077340822625]
G-Fuzz is a directed fuzzing framework for gVisor.
G-Fuzz has been deployed in industry and has detected multiple serious vulnerabilities.
arXiv Detail & Related papers (2024-09-20T01:00:22Z) - FuzzCoder: Byte-level Fuzzing Test via Large Language Model [46.18191648883695]
We propose to adopt fine-tuned large language models (FuzzCoder) to learn patterns in the input files from successful attacks.
FuzzCoder can predict mutation locations and strategies locations in input files to trigger abnormal behaviors of the program.
arXiv Detail & Related papers (2024-09-03T14:40:31Z) - Exploring Latent Pathways: Enhancing the Interpretability of Autonomous Driving with a Variational Autoencoder [79.70947339175572]
A bio-inspired neural circuit policy model has emerged as an innovative control module.
We take a leap forward by integrating a variational autoencoder with the neural circuit policy controller.
In addition to the architectural shift toward a variational autoencoder, this study introduces the automatic latent perturbation tool.
arXiv Detail & Related papers (2024-04-02T09:05:47Z) - Fuzzing BusyBox: Leveraging LLM and Crash Reuse for Embedded Bug
Unearthing [2.4287247817521096]
Vulnerabilities in BusyBox can have far-reaching consequences.
The study revealed the prevalence of older BusyBox versions in real-world embedded products.
We introduce two techniques to fortify software testing.
arXiv Detail & Related papers (2024-03-06T17:57:03Z) - DARTH: Holistic Test-time Adaptation for Multiple Object Tracking [87.72019733473562]
Multiple object tracking (MOT) is a fundamental component of perception systems for autonomous driving.
Despite the urge of safety in driving systems, no solution to the MOT adaptation problem to domain shift in test-time conditions has ever been proposed.
We introduce DARTH, a holistic test-time adaptation framework for MOT.
arXiv Detail & Related papers (2023-10-03T10:10:42Z) - Revisiting Neural Program Smoothing for Fuzzing [8.861172379630899]
This paper presents the most extensive evaluation of NPS fuzzers against standard gray-box fuzzers.
We implement Neuzz++, which shows that addressing the practical limitations of NPS fuzzers improves performance.
We present MLFuzz, a platform with GPU access for easy and reproducible evaluation of ML-based fuzzers.
arXiv Detail & Related papers (2023-09-28T17:17:11Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
We propose a novel anomaly detection model called Discriminatory Auto-Encoder (DAE)
It uses the baseline of a regular LSTM-based auto-encoder but with several decoders, each getting data of a specific flight phase.
Results show that the DAE achieves better results in both accuracy and speed of detection.
arXiv Detail & Related papers (2021-09-08T14:07:55Z) - DeFuzz: Deep Learning Guided Directed Fuzzing [41.61500799890691]
We propose a deep learning (DL) guided directed fuzzing for software vulnerability detection, named DeFuzz.
DeFuzz includes two main schemes: (1) we employ a pre-trained DL prediction model to identify the potentially vulnerable functions and the locations (i.e., vulnerable addresses)
Precisely, we employ Bidirectional-LSTM (BiLSTM) to identify attention words, and the vulnerabilities are associated with these attention words in functions.
arXiv Detail & Related papers (2020-10-23T03:44:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.