Neural Network Emulation of the Classical Limit in Quantum Systems via Learned Observable Mappings
- URL: http://arxiv.org/abs/2504.10781v1
- Date: Tue, 15 Apr 2025 00:48:36 GMT
- Title: Neural Network Emulation of the Classical Limit in Quantum Systems via Learned Observable Mappings
- Authors: Kamran Majid,
- Abstract summary: We develop and train a neural network architecture to learn the mapping from initial expectation values and $hbar$ to the time evolution of the expectation value of position.<n>By analyzing the network's predictions across different regimes of hbar, we aim to provide computational insights into the nature of the quantum-classical transition.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The classical limit of quantum mechanics, formally investigated through frameworks like strict deformation quantization, remains a profound area of inquiry in the philosophy of physics. This paper explores a computational approach employing a neural network to emulate the emergence of classical behavior from the quantum harmonic oscillator as Planck's constant $\hbar$ approaches zero. We develop and train a neural network architecture to learn the mapping from initial expectation values and $\hbar$ to the time evolution of the expectation value of position. By analyzing the network's predictions across different regimes of hbar, we aim to provide computational insights into the nature of the quantum-classical transition. This work demonstrates the potential of machine learning as a complementary tool for exploring foundational questions in quantum mechanics and its classical limit.
Related papers
- Quantum Supervised Learning [0.5439020425819]
Recent advancements in quantum computing have positioned it as a prospective solution for tackling intricate computational challenges.
The field of quantum machine learning is still in its early stages, and there persists a level of skepticism regarding a possible near-term quantum advantage.
This paper aims to provide a classical perspective on current quantum algorithms for supervised learning.
arXiv Detail & Related papers (2024-07-24T11:05:05Z) - A Quick Introduction to Quantum Machine Learning for Non-Practitioners [0.0]
The paper covers basic quantum mechanics principles, including superposition, phase space, and entanglement.
It also reviews classical deep learning concepts, such as artificial neural networks, gradient descent, and backpropagation.
An example problem demonstrates the potential advantages of quantum neural networks.
arXiv Detail & Related papers (2024-02-22T16:48:17Z) - Quantum Generative Adversarial Networks: Bridging Classical and Quantum
Realms [0.6827423171182153]
We explore the synergistic fusion of classical and quantum computing paradigms within the realm of Generative Adversarial Networks (GANs)
Our objective is to seamlessly integrate quantum computational elements into the conventional GAN architecture, thereby unlocking novel pathways for enhanced training processes.
This research is positioned at the forefront of quantum-enhanced machine learning, presenting a critical stride towards harnessing the computational power of quantum systems.
arXiv Detail & Related papers (2023-12-15T16:51:36Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
Building a quantum analog of classical deep neural networks represents a fundamental challenge in quantum computing.
Key issue is how to address the inherent non-linearity of classical deep learning.
We introduce the Quantum Path Kernel, a formulation of quantum machine learning capable of replicating those aspects of deep machine learning.
arXiv Detail & Related papers (2022-12-22T16:06:24Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
Quantum generative learning models (QGLMs) may surpass their classical counterparts.
We review the current progress of QGLMs from the perspective of machine learning.
We discuss the potential applications of QGLMs in both conventional machine learning tasks and quantum physics.
arXiv Detail & Related papers (2022-06-07T07:32:57Z) - Mutual Reinforcement between Neural Networks and Quantum Physics [0.0]
Quantum machine learning emerges from the symbiosis of quantum mechanics and machine learning.
The use of classical machine learning as a tool applied to quantum physics problems.
The design of a quantum neural network based on the dynamics of a quantum perceptron with the application of shortcuts to adiabaticity gives rise to a short operation time and robust performance.
arXiv Detail & Related papers (2021-05-27T16:20:50Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Quantum Deformed Neural Networks [83.71196337378022]
We develop a new quantum neural network layer designed to run efficiently on a quantum computer.
It can be simulated on a classical computer when restricted in the way it entangles input states.
arXiv Detail & Related papers (2020-10-21T09:46:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.