論文の概要: Uplink Assisted Joint Channel Estimation and CSI Feedback: An Approach Based on Deep Joint Source-Channel Coding
- arxiv url: http://arxiv.org/abs/2504.10836v1
- Date: Tue, 15 Apr 2025 03:29:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-16 22:07:03.189854
- Title: Uplink Assisted Joint Channel Estimation and CSI Feedback: An Approach Based on Deep Joint Source-Channel Coding
- Title(参考訳): Uplink Assisted Joint Channel Estimation and CSI Feedback: An Approach Based on Deep Joint Source-Channel Coding
- Authors: Yiran Guo, Wei Chen, Bo Ai,
- Abstract要約: ダウンリンクCSI獲得のための深層学習によるアップリンク支援共同CEとCSIフィードバックアプローチを提案する。
提案するネットワークは,従来の分離されたソースチャネル符号化において発生する崖効果を軽減するために,ディープジョイント・ソースチャネル符号化アーキテクチャを採用している。
- 参考スコア(独自算出の注目度): 20.422899602093786
- License:
- Abstract: In frequency division duplex (FDD) multiple-input multiple-output (MIMO) wireless communication systems, the acquisition of downlink channel state information (CSI) is essential for maximizing spatial resource utilization and improving system spectral efficiency. The separate design of modules in AI-based CSI feedback architectures under traditional modular communication frameworks, including channel estimation (CE), CSI compression and feedback, leads to sub-optimal performance. In this paper, we propose an uplink assisted joint CE and and CSI feedback approach via deep learning for downlink CSI acquisition, which mitigates performance degradation caused by distribution bias across separately trained modules in traditional modular communication frameworks. The proposed network adopts a deep joint source-channel coding (DJSCC) architecture to mitigate the cliff effect encountered in the conventional separate source-channel coding. Furthermore, we exploit the uplink CSI as auxiliary information to enhance CSI reconstruction accuracy by leveraging the partial reciprocity between the uplink and downlink channels in FDD systems, without introducing additional overhead. The effectiveness of uplink CSI as assisted information and the necessity of an end-toend multi-module joint training architecture is validated through comprehensive ablation and scalability experiments.
- Abstract(参考訳): 周波数分割多重出力(MIMO)無線通信システムでは、空間資源利用の最大化とシステムスペクトル効率の向上に、ダウンリンクチャネル状態情報(CSI)の取得が不可欠である。
AIベースのCSIフィードバックアーキテクチャにおいて、チャネル推定(CE)、CSI圧縮、フィードバックを含む従来のモジュール通信フレームワークの下でモジュールを分離した設計は、準最適パフォーマンスをもたらす。
本稿では、従来のモジュール通信フレームワークにおいて、個別に訓練されたモジュール間の分散バイアスに起因する性能劣化を緩和する、ダウンリンクCSI取得のための深層学習によるアップリンク支援共同CEとCSIフィードバックアプローチを提案する。
提案するネットワークは,従来の分離されたソースチャネル符号化において発生する崖効果を軽減するために,ディープジョイントソースチャネル符号化(DJSCC)アーキテクチャを採用している。
さらに、アップリンクCSIを補助情報として利用して、追加のオーバーヘッドを伴わずに、FDDシステムにおけるアップリンクチャネルとダウンリンクチャネルの間の部分的相互性を活用することにより、CSI再構成精度を向上させる。
補助情報としてのアップリンクCSIの有効性と,包括的アブレーションおよび拡張性実験により,エンドツーエンドの多モジュール共同学習アーキテクチャの必要性を検証した。
関連論文リスト
- Multi-level Reliability Interface for Semantic Communications over Wireless Networks [5.9056146376982]
ジョイントソースチャネル符号化(JSCC)は、ソースメッセージをチャネル入力シンボルに直接マッピングする。
本稿では,新しいマルチレベル信頼性インタフェースを用いて,ソースマッピングとチャネルマッピングを個別に,順次に設計することを提案する。
この研究は、無線ネットワークにおける意味コミュニケーションの実現に向けた重要なステップである。
論文 参考訳(メタデータ) (2024-07-07T20:15:10Z) - Joint Channel Estimation and Feedback with Masked Token Transformers in
Massive MIMO Systems [74.52117784544758]
本稿では,CSI行列内の固有周波数領域相関を明らかにするエンコーダデコーダに基づくネットワークを提案する。
エンコーダ・デコーダネットワーク全体がチャネル圧縮に使用される。
提案手法は,共同作業における現状のチャネル推定およびフィードバック技術より優れる。
論文 参考訳(メタデータ) (2023-06-08T06:15:17Z) - On Neural Architectures for Deep Learning-based Source Separation of
Co-Channel OFDM Signals [104.11663769306566]
周波数分割多重化(OFDM)信号を含む単一チャネル音源分離問題について検討する。
我々はOFDM構造からの洞察に基づいて、ネットワークパラメータ化に対する重要なドメインインフォームド修正を提案する。
論文 参考訳(メタデータ) (2023-03-11T16:29:13Z) - Overview of Deep Learning-based CSI Feedback in Massive MIMO Systems [77.0986534024972]
ディープラーニング(DL)ベースのCSIフィードバックは、DLベースのオートエンコーダによるCSI圧縮と再構築を指し、フィードバックオーバーヘッドを大幅に削減することができる。
その焦点は、CSIフィードバックの正確性を改善するために、新しいニューラルネットワークアーキテクチャとコミュニケーション専門家の知識の利用である。
論文 参考訳(メタデータ) (2022-06-29T03:28:57Z) - Deep Learning for 1-Bit Compressed Sensing-based Superimposed CSI
Feedback [2.6831842796906393]
本稿では,1ビット圧縮されたセンサによる重畳されたCSIフィードバックを改善するためのディープラーニング方式を提案する。
提案方式は,UL-USとダウンリンクCSIの回復精度を低処理遅延で向上する。
論文 参考訳(メタデータ) (2022-03-13T09:33:53Z) - PolarDenseNet: A Deep Learning Model for CSI Feedback in MIMO Systems [18.646674391114548]
UEにおけるCSIを低次元の潜在空間に符号化し、基地局で復号する自動エンコーダアーキテクチャに基づくAIベースのCSIフィードバックを提案する。
シミュレーションの結果,AIに基づく提案したアーキテクチャは,最先端の高分解能線形組合せ符号ブックよりも優れていた。
論文 参考訳(メタデータ) (2022-02-02T19:04:49Z) - Deep Learning-based Implicit CSI Feedback in Massive MIMO [68.81204537021821]
ニューラルネットワーク(NN)を用いて,プリコーディング行列インジケータ(PMI)符号化とデコードモジュールを置き換える,低オーバヘッド特性を継承するDLベースの暗黙的フィードバックアーキテクチャを提案する。
1つのリソースブロック(RB)では、2つのアンテナ構成下のタイプIコードブックと比較して25.0%と40.0%のオーバーヘッドを節約できる。
論文 参考訳(メタデータ) (2021-05-21T02:43:02Z) - Model-Driven Deep Learning Based Channel Estimation and Feedback for
Millimeter-Wave Massive Hybrid MIMO Systems [61.78590389147475]
本稿では,ミリ波(mmWave)システムのモデル駆動深層学習(MDDL)に基づくチャネル推定とフィードバック方式を提案する。
無線周波数(RF)鎖の限られた数から高次元チャネルを推定するためのアップリンクパイロットオーバーヘッドを低減するために,位相シフトネットワークとチャネル推定器を自動エンコーダとして共同で訓練することを提案する。
MDDLに基づくチャネル推定とフィードバック方式は,最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-04-22T13:34:53Z) - Millimeter Wave Communications with an Intelligent Reflector:
Performance Optimization and Distributional Reinforcement Learning [119.97450366894718]
ミリ波基地局のダウンリンクマルチユーザ通信を最適化するための新しいフレームワークを提案する。
チャネル状態情報(CSI)をリアルタイムで計測するために,チャネル推定手法を開発した。
最適赤外反射を学習し、ダウンリンク能力の期待を最大化するために、分布強化学習(DRL)手法を提案する。
論文 参考訳(メタデータ) (2020-02-24T22:18:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。