論文の概要: ARise: Towards Knowledge-Augmented Reasoning via Risk-Adaptive Search
- arxiv url: http://arxiv.org/abs/2504.10893v1
- Date: Tue, 15 Apr 2025 06:06:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-16 22:11:57.226706
- Title: ARise: Towards Knowledge-Augmented Reasoning via Risk-Adaptive Search
- Title(参考訳): ARise:リスク適応検索による知識強化推論を目指して
- Authors: Yize Zhang, Tianshu Wang, Sirui Chen, Kun Wang, Xingyu Zeng, Hongyu Lin, Xianpei Han, Le Sun, Chaochao Lu,
- Abstract要約: 動的検索強化生成(RAG)と中間的推論状態のリスクアセスメントを統合する新しいフレームワークであるARiseを紹介する。
ARiseは最先端のKAR手法を最大23.10%、最新のRAG搭載の大きな推論モデルを最大25.37%上回っている。
- 参考スコア(独自算出の注目度): 46.7782420285593
- License:
- Abstract: Large language models (LLMs) have demonstrated impressive capabilities and are receiving increasing attention to enhance their reasoning through scaling test--time compute. However, their application in open--ended, knowledge--intensive, complex reasoning scenarios is still limited. Reasoning--oriented methods struggle to generalize to open--ended scenarios due to implicit assumptions of complete world knowledge. Meanwhile, knowledge--augmented reasoning (KAR) methods fail to address two core challenges: 1) error propagation, where errors in early steps cascade through the chain, and 2) verification bottleneck, where the explore--exploit tradeoff arises in multi--branch decision processes. To overcome these limitations, we introduce ARise, a novel framework that integrates risk assessment of intermediate reasoning states with dynamic retrieval--augmented generation (RAG) within a Monte Carlo tree search paradigm. This approach enables effective construction and optimization of reasoning plans across multiple maintained hypothesis branches. Experimental results show that ARise significantly outperforms the state--of--the--art KAR methods by up to 23.10%, and the latest RAG-equipped large reasoning models by up to 25.37%.
- Abstract(参考訳): 大規模言語モデル(LLM)は目覚ましい能力を示しており、テスト時間計算のスケーリングを通じて推論を強化するために注目を集めている。しかし、オープンエンド、ナレッジ集約、複雑な推論シナリオにおける彼らの応用はまだ限られている。推論指向の手法は、完全な世界知識の暗黙の仮定によるオープンエンドシナリオへの一般化に苦慮している。一方で、ナレッジ強化推論(KAR)手法は2つの主要な課題に対処できない。
1) 初期ステップにおけるエラーが連鎖を通り抜けて発生するエラーの伝播
2) マルチブランチ決定プロセスにおいて,探索-露見トレードオフが発生する検証ボトルネック。
これらの制約を克服するため,モンテカルロ木探索パラダイムにおいて,中間的推論状態のリスクアセスメントと動的検索強化生成(RAG)を統合した新たなフレームワークであるARiseを紹介した。この手法により,複数の保守された仮説分岐をまたいだ推論計画の効率的な構築と最適化が可能になる。実験結果から,ARiseは最先端のKAR手法を最大23.10%,最新のRAG搭載大規模推論モデルでは最大25.37%向上することが示された。
関連論文リスト
- Coarse-to-Fine Process Reward Modeling for Mathematical Reasoning [11.15613673478208]
プロセス・リワード・モデル (Process Reward Model, PRM) は数学的推論において重要な役割を担い、高品質なプロセスデータを必要とする。
我々は,Large Language Models (LLM) が生成する推論ステップが,厳密なインクリメンタルな情報表示に失敗することが多く,冗長性が生じることを観察する。
本稿では,冗長なステップを検出するための簡易かつ効果的な粗大な戦略CFPRMを提案する。
論文 参考訳(メタデータ) (2025-01-23T12:44:45Z) - Imitate, Explore, and Self-Improve: A Reproduction Report on Slow-thinking Reasoning Systems [92.89673285398521]
o1のような推論システムは、複雑な推論タスクを解く際、顕著な能力を示した。
推論モデルをトレーニングするために、模倣、探索、自己改善のフレームワークを導入します。
提案手法は,産業レベルの推論システムと比較して競争性能が向上する。
論文 参考訳(メタデータ) (2024-12-12T16:20:36Z) - A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation [0.0]
画像セグメンテーションの進歩は、ディープラーニングベースのコンピュータビジョンの幅広い範囲において重要な役割を担っている。
この文脈において不確かさの定量化が広く研究され、モデル無知(エピステミック不確実性)やデータあいまいさ(アラート不確実性)を表現し、不正な意思決定を防ぐことができる。
論文 参考訳(メタデータ) (2024-11-25T13:26:09Z) - Controlling Risk of Retrieval-augmented Generation: A Counterfactual Prompting Framework [77.45983464131977]
我々は、RAGモデルの予測が誤りであり、現実のアプリケーションにおいて制御不能なリスクをもたらす可能性がどの程度あるかに焦点を当てる。
本研究は,RAGの予測に影響を及ぼす2つの重要な潜伏要因を明らかにする。
我々は,これらの要因をモデルに誘導し,その応答に与える影響を解析する,反実的プロンプトフレームワークを開発した。
論文 参考訳(メタデータ) (2024-09-24T14:52:14Z) - Rethinking State Disentanglement in Causal Reinforcement Learning [78.12976579620165]
因果性は、根底にある状態が識別可能性によって一意に回復できることを保証するための厳密な理論的支援を提供する。
我々はこの研究ラインを再考し、RL固有のコンテキストを取り入れることで、潜在状態に対する以前の識別可能性分析における不要な仮定を低減できることを示した。
本稿では, 従来手法の複雑な構造制約を, 遷移と報酬保存の2つの簡単な制約に置き換えることにより, 一般に部分的に観測可能なマルコフ決定過程(POMDP)を提案する。
論文 参考訳(メタデータ) (2024-08-24T06:49:13Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
大規模言語モデル(LLM)は、問題解決と意思決定の能力の向上を示している。
本稿ではメタ推論技術を必要とするプロセスベースのベンチマークMR-Benを提案する。
メタ推論のパラダイムは,システム2のスロー思考に特に適しています。
論文 参考訳(メタデータ) (2024-06-20T03:50:23Z) - DetermLR: Augmenting LLM-based Logical Reasoning from Indeterminacy to Determinacy [76.58614128865652]
非決定性から決定性への進化として推論過程を再考する新しい視点であるDetermLRを提案する。
まず、既知の条件を次の2つのタイプに分類する: 決定的および不決定的前提 これは、推論プロセスのオール方向を提供し、不決定的データを段階的決定的洞察に変換する際のLCMを導く。
我々は、利用可能な施設の保存と抽出、推論メモリによる推論パスの自動化、そしてその後の推論ステップに関する歴史的推論の詳細を保存する。
論文 参考訳(メタデータ) (2023-10-28T10:05:51Z) - Towards Trustworthy Explanation: On Causal Rationalization [9.48539398357156]
本研究では,2つの因果デシラタに基づく合理化モデルを提案する。
提案した因果合理化の優れた性能は,実世界のレビューや医療データセットで実証されている。
論文 参考訳(メタデータ) (2023-06-25T03:34:06Z) - Causal Intervention-based Prompt Debiasing for Event Argument Extraction [19.057467535856485]
我々は、名前ベースのプロンプトとオントロジーベースのプロンプトの2種類のプロンプトを比較し、オントロジーベースのプロンプトメソッドがゼロショットイベント引数抽出(EAE)においてそのプロンプトをいかに上回っているかを明らかにする。
2つのベンチマーク実験により,デバイアス法によって修正されたベースラインモデルは,より効果的かつ堅牢になり,対向攻撃に対する耐性が著しく向上することが示された。
論文 参考訳(メタデータ) (2022-10-04T12:32:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。