論文の概要: MSCRS: Multi-modal Semantic Graph Prompt Learning Framework for Conversational Recommender Systems
- arxiv url: http://arxiv.org/abs/2504.10921v2
- Date: Fri, 25 Apr 2025 05:48:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:52.521134
- Title: MSCRS: Multi-modal Semantic Graph Prompt Learning Framework for Conversational Recommender Systems
- Title(参考訳): MSCRS:対話型レコメンダシステムのためのマルチモーダルセマンティックグラフプロンプト学習フレームワーク
- Authors: Yibiao Wei, Jie Zou, Weikang Guo, Guoqing Wang, Xing Xu, Yang Yang,
- Abstract要約: Conversational Recommender Systems (CRS)は、会話を通じてユーザと対話することでパーソナライズされたレコメンデーションを提供することを目的としている。
我々はMSCRSと呼ばれるCRSのためのマルチモーダルなセマンティックグラフプロンプト学習フレームワークを提案する。
提案手法は項目推薦の精度を大幅に向上させ,応答生成においてより自然で文脈的に関連のあるコンテンツを生成する。
- 参考スコア(独自算出の注目度): 15.792566559456422
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conversational Recommender Systems (CRSs) aim to provide personalized recommendations by interacting with users through conversations. Most existing studies of CRS focus on extracting user preferences from conversational contexts. However, due to the short and sparse nature of conversational contexts, it is difficult to fully capture user preferences by conversational contexts only. We argue that multi-modal semantic information can enrich user preference expressions from diverse dimensions (e.g., a user preference for a certain movie may stem from its magnificent visual effects and compelling storyline). In this paper, we propose a multi-modal semantic graph prompt learning framework for CRS, named MSCRS. First, we extract textual and image features of items mentioned in the conversational contexts. Second, we capture higher-order semantic associations within different semantic modalities (collaborative, textual, and image) by constructing modality-specific graph structures. Finally, we propose an innovative integration of multi-modal semantic graphs with prompt learning, harnessing the power of large language models to comprehensively explore high-dimensional semantic relationships. Experimental results demonstrate that our proposed method significantly improves accuracy in item recommendation, as well as generates more natural and contextually relevant content in response generation.
- Abstract(参考訳): Conversational Recommender Systems (CRS) は、会話を通じてユーザと対話することでパーソナライズされたレコメンデーションを提供することを目的としている。
CRSの既存の研究は、会話の文脈からユーザの好みを抽出することに焦点を当てている。
しかし,会話コンテキストの短さと疎度さのため,会話コンテキストのみによってユーザの好みを完全に把握することは困難である。
マルチモーダルなセマンティック情報は、様々な次元からユーザ好みの表現を豊かにすることができる(例えば、ある映画のユーザー好みは、その壮大な視覚効果と魅力的なストーリーラインに由来するかもしれない)。
本稿では,MSCRSと呼ばれるCRSのためのマルチモーダルなセマンティックグラフプロンプト学習フレームワークを提案する。
まず,会話場面で言及された項目のテキスト的特徴と画像的特徴を抽出する。
第2に、モダリティ固有のグラフ構造を構築することにより、異なる意味的モダリティ(協調性、テキスト性、画像)内の高階意味的関連を捉える。
最後に,高次元意味関係を包括的に探求するために,大規模言語モデルの力を活用して,素早い学習を伴うマルチモーダル意味グラフの革新的な統合を提案する。
実験の結果,提案手法は項目推薦の精度を大幅に向上し,応答生成においてより自然で文脈的に関連のあるコンテンツを生成することがわかった。
関連論文リスト
- Graph Retrieval-Augmented LLM for Conversational Recommendation Systems [52.35491420330534]
G-CRS(Graph Retrieval-Augmented Large Language Model for Conversational Recommender Systems)は、グラフ検索強化世代とテキスト内学習を組み合わせた学習自由フレームワークである。
G-CRSは、タスク固有のトレーニングを必要とせず、既存の手法よりも優れたレコメンデーション性能を達成する。
論文 参考訳(メタデータ) (2025-03-09T03:56:22Z) - Unveiling User Preferences: A Knowledge Graph and LLM-Driven Approach for Conversational Recommendation [55.5687800992432]
本稿では,Large Language Models (LLMs) とKGs (KGs) を相乗化するプラグイン・アンド・プレイフレームワークを提案する。
これにより、LLMはKGエンティティを簡潔な自然言語記述に変換することができ、ドメイン固有の知識を理解できるようになる。
論文 参考訳(メタデータ) (2024-11-16T11:47:21Z) - Parameter-Efficient Conversational Recommender System as a Language
Processing Task [52.47087212618396]
会話レコメンデータシステム(CRS)は,自然言語会話を通じてユーザの嗜好を喚起することで,ユーザに対して関連項目を推薦することを目的としている。
先行作業では、アイテムのセマンティック情報、対話生成のための言語モデル、関連する項目のランク付けのためのレコメンデーションモジュールとして、外部知識グラフを利用することが多い。
本稿では、自然言語の項目を表現し、CRSを自然言語処理タスクとして定式化する。
論文 参考訳(メタデータ) (2024-01-25T14:07:34Z) - Knowledge Graphs and Pre-trained Language Models enhanced Representation Learning for Conversational Recommender Systems [58.561904356651276]
本稿では,対話型推薦システムのためのエンティティの意味理解を改善するために,知識強化型エンティティ表現学習(KERL)フレームワークを紹介する。
KERLは知識グラフと事前訓練された言語モデルを使用して、エンティティの意味的理解を改善する。
KERLはレコメンデーションとレスポンス生成の両方のタスクで最先端の結果を達成する。
論文 参考訳(メタデータ) (2023-12-18T06:41:23Z) - Multi-grained Hypergraph Interest Modeling for Conversational
Recommendation [75.65483522949857]
複雑な履歴データの下でユーザの興味を捉えるために, マルチグラデーション・ハイパーグラフ・インフォメーション・モデリング手法を提案する。
提案手法では,まず,ユーザの過去の対話セッションをモデル化し,セッションベースハイパーグラフを作成するためにハイパーグラフ構造を用いる。
さらに,2種類のハイパーグラフに対して多粒度ハイパーグラフの畳み込みを行い,拡張表現を用いて関心を意識したCRSを開発する。
論文 参考訳(メタデータ) (2023-05-04T13:13:44Z) - Improving Items and Contexts Understanding with Descriptive Graph for
Conversational Recommendation [4.640835690336652]
会話レコメンデーションシステム(CRS)における最先端の手法は、外部知識を活用して、項目の表現と文脈の表現を強化する。
我々は,同じ意味空間における項目とその関連する文脈語を共同でモデル化する新しいCRSフレームワークKLEVERを提案する。
CRSデータセットのベンチマーク実験では、KLEVERは特にユーザの応答からの情報が不足している場合に、優れたパフォーマンスを達成することが示されている。
論文 参考訳(メタデータ) (2023-04-11T21:21:46Z) - Customized Conversational Recommender Systems [45.84713970070487]
会話レコメンデータシステム(CRS)は、ユーザの現在の意図を捉え、リアルタイムなマルチターン対話によるレコメンデーションを提供することを目的としている。
本稿では,3つの視点からCRSモデルをカスタマイズした新しいCRSモデルであるCustomized Conversational Recommender System(CCRS)を提案する。
パーソナライズされたレコメンデーションを提供するために,対話コンテキストからユーザの現在あるきめ細かい意図を,ユーザ固有の嗜好のガイダンスで抽出する。
論文 参考訳(メタデータ) (2022-06-30T09:45:36Z) - Improving Conversational Recommender Systems via Knowledge Graph based
Semantic Fusion [77.21442487537139]
対話型レコメンデータシステム(CRS)は,対話型対話を通じて高品質なアイテムをユーザに推薦することを目的としている。
まず、会話データ自体にユーザの好みを正確に理解するための十分なコンテキスト情報がない。
第二に、自然言語表現とアイテムレベルのユーザ嗜好の間には意味的なギャップがある。
論文 参考訳(メタデータ) (2020-07-08T11:14:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。