論文の概要: Self-Supervised Enhancement of Forward-Looking Sonar Images: Bridging Cross-Modal Degradation Gaps through Feature Space Transformation and Multi-Frame Fusion
- arxiv url: http://arxiv.org/abs/2504.10974v1
- Date: Tue, 15 Apr 2025 08:34:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-16 22:06:47.052119
- Title: Self-Supervised Enhancement of Forward-Looking Sonar Images: Bridging Cross-Modal Degradation Gaps through Feature Space Transformation and Multi-Frame Fusion
- Title(参考訳): 前向きソナー画像の自己改善:特徴空間変換と多フレーム融合によるクロスモーダル劣化ギャップのブリッジ
- Authors: Zhisheng Zhang, Peng Zhang, Fengxiang Wang, Liangli Ma, Fuchun Sun,
- Abstract要約: 前向きのソナー画像の強調は、正確な水中目標検出に不可欠である。
本稿では,画素領域からソナー画像をロバストな特徴領域にマッピングする特徴空間変換を提案する。
提案手法は既存の手法よりも優れ,ノイズを効果的に抑制し,詳細なエッジを保ち,明るさを大幅に改善する。
- 参考スコア(独自算出の注目度): 17.384482405769567
- License:
- Abstract: Enhancing forward-looking sonar images is critical for accurate underwater target detection. Current deep learning methods mainly rely on supervised training with simulated data, but the difficulty in obtaining high-quality real-world paired data limits their practical use and generalization. Although self-supervised approaches from remote sensing partially alleviate data shortages, they neglect the cross-modal degradation gap between sonar and remote sensing images. Directly transferring pretrained weights often leads to overly smooth sonar images, detail loss, and insufficient brightness. To address this, we propose a feature-space transformation that maps sonar images from the pixel domain to a robust feature domain, effectively bridging the degradation gap. Additionally, our self-supervised multi-frame fusion strategy leverages complementary inter-frame information to naturally remove speckle noise and enhance target-region brightness. Experiments on three self-collected real-world forward-looking sonar datasets show that our method significantly outperforms existing approaches, effectively suppressing noise, preserving detailed edges, and substantially improving brightness, demonstrating strong potential for underwater target detection applications.
- Abstract(参考訳): 前向きのソナー画像の強調は、正確な水中目標検出に不可欠である。
現在のディープラーニング手法は主にシミュレーションデータを用いた教師あり学習に依存しているが、高品質な実世界のペアデータを得ることの難しさは、その実用性と一般化を制限している。
リモートセンシングによる自己監督的アプローチはデータの不足を部分的に軽減するが、ソナー画像とリモートセンシング画像の相互劣化ギャップを無視する。
トレーニング済みの重量を直接転送すると、過度に滑らかなソナー像、詳細な損失、明るさが不足する。
そこで本研究では,画素領域からのソナー画像をロバストな特徴領域にマッピングし,分解ギャップを効果的に埋める特徴空間変換を提案する。
さらに、我々の自己監督型多フレーム融合戦略は、相補的なフレーム間情報を利用して、スペックルノイズを自然に除去し、ターゲット領域の輝度を高める。
3つの自己組織化された実世界のフォワードライクなソナーデータセットの実験により、我々の手法は既存の手法よりも大幅に優れており、ノイズを効果的に抑制し、詳細なエッジを保ち、明るさを著しく改善し、水中ターゲット検出アプリケーションに強い可能性を示している。
関連論文リスト
- ExpRDiff: Short-exposure Guided Diffusion Model for Realistic Local Motion Deblurring [61.82010103478833]
そこで本稿では,コンテキストベースの局所的ぼかし検出モジュールを開発し,さらにコンテキスト情報を加えて,ぼかし領域の識別を改善する。
最新のスマートフォンには、短時間露光画像を提供するカメラが備わっていることを考慮し、ぼやけたガイド付き画像復元法を開発した。
上記のコンポーネントを ExpRDiff という名前のシンプルで効果的なネットワークに定式化します。
論文 参考訳(メタデータ) (2024-12-12T11:42:39Z) - Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
顔合成と編集のためのディープフェイク技術は、生成モデルに重大なリスクをもたらす。
本稿では,モデルバックボーン,タイプ,データセット間で検出性能がどう変化するかを検討する。
本稿では、顔画像のパフォーマンスを向上させるContrastive Blurと、ノイズタイプのバイアスに対処し、ドメイン間のパフォーマンスのバランスをとるMINDERを紹介する。
論文 参考訳(メタデータ) (2024-11-28T13:04:45Z) - WTCL-Dehaze: Rethinking Real-world Image Dehazing via Wavelet Transform and Contrastive Learning [17.129068060454255]
自律運転や監視といったアプリケーションには、単一イメージのデハジングが不可欠だ。
コントラスト損失と離散ウェーブレット変換を統合した半教師付きデハージングネットワークを提案する。
提案アルゴリズムは,最先端の単一画像復調法と比較して,優れた性能とロバスト性を実現している。
論文 参考訳(メタデータ) (2024-10-07T05:36:11Z) - Denoising as Adaptation: Noise-Space Domain Adaptation for Image Restoration [64.84134880709625]
拡散モデルを用いて,雑音空間を介して領域適応を行うことが可能であることを示す。
特に、補助的な条件入力が多段階の復調過程にどのように影響するかというユニークな性質を活用することにより、有意義な拡散損失を導出する。
拡散モデルにおけるチャネルシャッフル層や残留スワッピング型コントラスト学習などの重要な戦略を提案する。
論文 参考訳(メタデータ) (2024-06-26T17:40:30Z) - Inhomogeneous illumination image enhancement under ex-tremely low visibility condition [3.534798835599242]
濃霧を通した画像は、物体の検出や認識の曖昧化といったアプリケーションに不可欠な視覚情報を欠いているため、従来の画像処理手法を妨げている。
本稿では,構造微分・積分フィルタ(F)に基づく背景照明を適応的にフィルタし,信号情報のみを向上させる手法を提案する。
提案手法は, 極めて低視認性条件下で信号の明瞭度を著しく向上し, 既存の技術よりも優れており, 深部霧画像への応用に大きく貢献することを示した。
論文 参考訳(メタデータ) (2024-04-26T16:09:42Z) - Improving Lens Flare Removal with General Purpose Pipeline and Multiple
Light Sources Recovery [69.71080926778413]
フレアアーティファクトは、画像の視覚的品質と下流のコンピュータビジョンタスクに影響を与える。
現在の方法では、画像信号処理パイプラインにおける自動露光やトーンマッピングは考慮されていない。
本稿では、ISPを再検討し、より信頼性の高い光源回収戦略を設計することで、レンズフレア除去性能を向上させるソリューションを提案する。
論文 参考訳(メタデータ) (2023-08-31T04:58:17Z) - Learning Heavily-Degraded Prior for Underwater Object Detection [59.5084433933765]
本稿では、検出器フレンドリーな画像から、転送可能な事前知識を求める。
これは、検出器フレンドリー(DFUI)と水中画像の高度に劣化した領域が、特徴分布のギャップがあることを統計的に観察したものである。
高速かつパラメータの少ない本手法は変圧器型検出器よりも優れた性能を保っている。
論文 参考訳(メタデータ) (2023-08-24T12:32:46Z) - Weakly Supervised Face and Whole Body Recognition in Turbulent
Environments [2.2263723609685773]
本稿では, 領域表現を生成し, 乱流像と原始像を共通部分空間に整列する, 弱教師付きフレームワークを提案する。
また、乱流画像で観測される幾何歪みを予測する新しい傾きマップ推定器も導入した。
提案手法では, 乱流のない画像や地対画像の合成は必要とせず, 注釈付きサンプルを著しく少なくする。
論文 参考訳(メタデータ) (2023-08-22T19:58:02Z) - Multi-Frequency-Aware Patch Adversarial Learning for Neural Point Cloud
Rendering [7.522462414919854]
ニューラルポイントクラウドレンダリングパイプラインを、新しいマルチ周波数対応パッチ対向学習フレームワークを通じて提示する。
提案手法は,実画像と合成画像のスペクトル差を最小化することにより,レンダリングの精度を向上させることを目的としている。
提案手法は,ニューラルポイントクラウドレンダリングにおける最先端の結果を有意差で生成する。
論文 参考訳(メタデータ) (2022-10-07T16:54:15Z) - FD-GAN: Generative Adversarial Networks with Fusion-discriminator for
Single Image Dehazing [48.65974971543703]
画像デハージングのためのFusion-Discriminator (FD-GAN) を用いた完全エンドツーエンドのジェネレータネットワークを提案する。
我々のモデルは、より自然でリアルなデハズド画像を生成することができ、色歪みは少なく、アーティファクトも少ない。
実験により, 提案手法は, 公開合成データセットと実世界の画像の両方において, 最先端の性能に達することが示された。
論文 参考訳(メタデータ) (2020-01-20T04:36:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。