DRIFT open dataset: A drone-derived intelligence for traffic analysis in urban environment
- URL: http://arxiv.org/abs/2504.11019v2
- Date: Sat, 26 Apr 2025 00:40:33 GMT
- Title: DRIFT open dataset: A drone-derived intelligence for traffic analysis in urban environment
- Authors: Hyejin Lee, Seokjun Hong, Jeonghoon Song, Haechan Cho, Zhixiong Jin, Byeonghun Kim, Joobin Jin, Jaegyun Im, Byeongjoon Noh, Hwasoo Yeo,
- Abstract summary: The DRone-derived Intelligence For Traffic analysis (DRIFT) dataset is a large-scale urban traffic dataset collected systematically from drone videos at approximately 250 meters altitude.<n>DRIFT provides high-resolution vehicle trajectories that include directional information, processed through video synchronization and orthomap alignment.<n>The dataset is expected to significantly contribute to academic research and practical applications, such as traffic flow analysis and simulation studies.
- Score: 2.780698399474917
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reliable traffic data are essential for understanding urban mobility and developing effective traffic management strategies. This study introduces the DRone-derived Intelligence For Traffic analysis (DRIFT) dataset, a large-scale urban traffic dataset collected systematically from synchronized drone videos at approximately 250 meters altitude, covering nine interconnected intersections in Daejeon, South Korea. DRIFT provides high-resolution vehicle trajectories that include directional information, processed through video synchronization and orthomap alignment, resulting in a comprehensive dataset of 81,699 vehicle trajectories. Through our DRIFT dataset, researchers can simultaneously analyze traffic at multiple scales - from individual vehicle maneuvers like lane-changes and safety metrics such as time-to-collision to aggregate network flow dynamics across interconnected urban intersections. The DRIFT dataset is structured to enable immediate use without additional preprocessing, complemented by open-source models for object detection and trajectory extraction, as well as associated analytical tools. DRIFT is expected to significantly contribute to academic research and practical applications, such as traffic flow analysis and simulation studies. The dataset and related resources are publicly accessible at https://github.com/AIxMobility/The-DRIFT.
Related papers
- OnSiteVRU: A High-Resolution Trajectory Dataset for High-Density Vulnerable Road Users [41.63444034391952]
This study developed the OnSiteVRU datasets, which cover a variety of scenarios, including intersections, road segments, and urban villages.<n>The datasets provide trajectory data for motor vehicles, electric bicycles, and human-powered bicycles, totaling approximately 17,429 trajectories with a precision of 0.04 seconds.<n>The results demonstrate that VRU_Data outperforms traditional datasets in terms of VRU density and scene coverage, offering a more comprehensive representation of VRU behavioral characteristics.
arXiv Detail & Related papers (2025-03-30T08:44:55Z) - Interaction Dataset of Autonomous Vehicles with Traffic Lights and Signs [11.127555705122283]
This paper presents the development of a comprehensive dataset capturing interactions between Autonomous Vehicles (AVs) and traffic control devices, specifically traffic lights and stop signs.<n>Our work addresses a critical gap in the existing literature by providing real-world trajectory data on how AVs navigate these traffic control devices.<n>We propose a methodology for identifying and extracting relevant interaction trajectory data from the Motion dataset, incorporating over 37,000 instances with traffic lights and 44,000 with stop signs.
arXiv Detail & Related papers (2025-01-21T22:59:50Z) - Multi-Source Urban Traffic Flow Forecasting with Drone and Loop Detector Data [61.9426776237409]
Drone-captured data can create an accurate multi-sensor mobility observatory for large-scale urban networks.<n>A simple yet effective graph-based model HiMSNet is proposed to integrate multiple data modalities and learn-temporal correlations.
arXiv Detail & Related papers (2025-01-07T03:23:28Z) - Real-Time Vehicle Detection and Urban Traffic Behavior Analysis Based on
UAV Traffic Videos on Mobile Devices [14.30857727025523]
This paper integrates drone technology, iOS development, and deep learning techniques to integrate traffic video acquisition, object detection, object tracking, and traffic behavior analysis functions on mobile devices.
The vehicle object detection can reach 98.27% precision rate and 87.93% recall rate, and the real-time processing capacity is stable at 30 frames per seconds.
arXiv Detail & Related papers (2024-02-26T02:09:36Z) - Traffic Reconstruction and Analysis of Natural Driving Behaviors at
Unsignalized Intersections [1.7273380623090846]
This research involved recording traffic at various unsignalized intersections in Memphis, TN, during different times of the day.
After manually labeling video data to capture specific variables, we reconstructed traffic scenarios in the SUMO simulation environment.
The output data from these simulations offered a comprehensive analysis, including time-space diagrams for vehicle movement, travel time frequency distributions, and speed-position plots to identify bottleneck points.
arXiv Detail & Related papers (2023-12-22T09:38:06Z) - The IMPTC Dataset: An Infrastructural Multi-Person Trajectory and
Context Dataset [4.413278371057897]
Inner-city intersections are among the most critical traffic areas for injury and fatal accidents.
We use an intelligent public inner-city intersection in Germany with visual sensor technology.
The resulting dataset consists of eight hours of measurement data.
arXiv Detail & Related papers (2023-07-12T13:46:20Z) - Generative AI-empowered Simulation for Autonomous Driving in Vehicular
Mixed Reality Metaverses [130.15554653948897]
In vehicular mixed reality (MR) Metaverse, distance between physical and virtual entities can be overcome.
Large-scale traffic and driving simulation via realistic data collection and fusion from the physical world is difficult and costly.
We propose an autonomous driving architecture, where generative AI is leveraged to synthesize unlimited conditioned traffic and driving data in simulations.
arXiv Detail & Related papers (2023-02-16T16:54:10Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
Federated learning empowered connected autonomous vehicle (FLCAV) has been proposed.
FLCAV preserves privacy while reducing communication and annotation costs.
It is challenging to determine the network resources and road sensor poses for multi-stage training.
arXiv Detail & Related papers (2022-06-03T23:55:45Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
Accurate inference of fine-grained traffic flow from coarse-grained one is an emerging yet crucial problem.
We propose a novel Road-Aware Traffic Flow Magnifier (RATFM) that exploits the prior knowledge of road networks.
Our method can generate high-quality fine-grained traffic flow maps.
arXiv Detail & Related papers (2021-09-29T07:51:49Z) - An Experimental Urban Case Study with Various Data Sources and a Model
for Traffic Estimation [65.28133251370055]
We organize an experimental campaign with video measurement in an area within the urban network of Zurich, Switzerland.
We focus on capturing the traffic state in terms of traffic flow and travel times by ensuring measurements from established thermal cameras.
We propose a simple yet efficient Multiple Linear Regression (MLR) model to estimate travel times with fusion of various data sources.
arXiv Detail & Related papers (2021-08-02T08:13:57Z) - Deep traffic light detection by overlaying synthetic context on
arbitrary natural images [49.592798832978296]
We propose a method to generate artificial traffic-related training data for deep traffic light detectors.
This data is generated using basic non-realistic computer graphics to blend fake traffic scenes on top of arbitrary image backgrounds.
It also tackles the intrinsic data imbalance problem in traffic light datasets, caused mainly by the low amount of samples of the yellow state.
arXiv Detail & Related papers (2020-11-07T19:57:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.