OnSiteVRU: A High-Resolution Trajectory Dataset for High-Density Vulnerable Road Users
- URL: http://arxiv.org/abs/2503.23365v1
- Date: Sun, 30 Mar 2025 08:44:55 GMT
- Title: OnSiteVRU: A High-Resolution Trajectory Dataset for High-Density Vulnerable Road Users
- Authors: Zhangcun Yan, Jianqing Li, Peng Hang, Jian Sun,
- Abstract summary: This study developed the OnSiteVRU datasets, which cover a variety of scenarios, including intersections, road segments, and urban villages.<n>The datasets provide trajectory data for motor vehicles, electric bicycles, and human-powered bicycles, totaling approximately 17,429 trajectories with a precision of 0.04 seconds.<n>The results demonstrate that VRU_Data outperforms traditional datasets in terms of VRU density and scene coverage, offering a more comprehensive representation of VRU behavioral characteristics.
- Score: 41.63444034391952
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: With the acceleration of urbanization and the growth of transportation demands, the safety of vulnerable road users (VRUs, such as pedestrians and cyclists) in mixed traffic flows has become increasingly prominent, necessitating high-precision and diverse trajectory data to support the development and optimization of autonomous driving systems. However, existing datasets fall short in capturing the diversity and dynamics of VRU behaviors, making it difficult to meet the research demands of complex traffic environments. To address this gap, this study developed the OnSiteVRU datasets, which cover a variety of scenarios, including intersections, road segments, and urban villages. These datasets provide trajectory data for motor vehicles, electric bicycles, and human-powered bicycles, totaling approximately 17,429 trajectories with a precision of 0.04 seconds. The datasets integrate both aerial-view natural driving data and onboard real-time dynamic detection data, along with environmental information such as traffic signals, obstacles, and real-time maps, enabling a comprehensive reconstruction of interaction events. The results demonstrate that VRU\_Data outperforms traditional datasets in terms of VRU density and scene coverage, offering a more comprehensive representation of VRU behavioral characteristics. This provides critical support for traffic flow modeling, trajectory prediction, and autonomous driving virtual testing. The dataset is publicly available for download at: https://www.kaggle.com/datasets/zcyan2/mixed-traffic-trajectory-dataset-in-from-shanghai.
Related papers
- Highly Accurate and Diverse Traffic Data: The DeepScenario Open 3D Dataset [25.244956737443527]
We introduce the DeepScenario Open 3D dataset (DSC3D) of 6 degrees of freedom bounding box trajectories acquired through a novel monocular camera drone tracking pipeline.
Our dataset includes more than 175,000 trajectories of 14 types of traffic participants and significantly exceeds existing datasets in terms of diversity and scale.
We demonstrate its utility across multiple applications including motion prediction, motion planning, scenario mining, and generative reactive traffic agents.
arXiv Detail & Related papers (2025-04-24T08:43:48Z) - DRIFT open dataset: A drone-derived intelligence for traffic analysis in urban environment [2.780698399474917]
The DRone-derived Intelligence For Traffic analysis (DRIFT) dataset is a large-scale urban traffic dataset collected systematically from drone videos at approximately 250 meters altitude.
DRIFT provides high-resolution vehicle trajectories that include directional information, processed through video synchronization and orthomap alignment.
The dataset is expected to significantly contribute to academic research and practical applications, such as traffic flow analysis and simulation studies.
arXiv Detail & Related papers (2025-04-15T09:43:13Z) - Interaction Dataset of Autonomous Vehicles with Traffic Lights and Signs [11.127555705122283]
This paper presents the development of a comprehensive dataset capturing interactions between Autonomous Vehicles (AVs) and traffic control devices, specifically traffic lights and stop signs.<n>Our work addresses a critical gap in the existing literature by providing real-world trajectory data on how AVs navigate these traffic control devices.<n>We propose a methodology for identifying and extracting relevant interaction trajectory data from the Motion dataset, incorporating over 37,000 instances with traffic lights and 44,000 with stop signs.
arXiv Detail & Related papers (2025-01-21T22:59:50Z) - Multi-Source Urban Traffic Flow Forecasting with Drone and Loop Detector Data [61.9426776237409]
Drone-captured data can create an accurate multi-sensor mobility observatory for large-scale urban networks.<n>A simple yet effective graph-based model HiMSNet is proposed to integrate multiple data modalities and learn-temporal correlations.
arXiv Detail & Related papers (2025-01-07T03:23:28Z) - IBB Traffic Graph Data: Benchmarking and Road Traffic Prediction Model [0.24999074238880487]
Road traffic congestion prediction is a crucial component of intelligent transportation systems.
IBB Traffic graph dataset covers the sensor data collected at 2451 distinct locations.
We propose a novel Road Traffic Prediction Model that strengthens temporal links through feature engineering.
arXiv Detail & Related papers (2024-08-02T05:23:19Z) - Leveraging Driver Field-of-View for Multimodal Ego-Trajectory Prediction [69.29802752614677]
RouteFormer is a novel ego-trajectory prediction network combining GPS data, environmental context, and the driver's field-of-view.
To tackle data scarcity and enhance diversity, we introduce GEM, a dataset of urban driving scenarios enriched with synchronized driver field-of-view and gaze data.
arXiv Detail & Related papers (2023-12-13T23:06:30Z) - RSRD: A Road Surface Reconstruction Dataset and Benchmark for Safe and
Comfortable Autonomous Driving [67.09546127265034]
Road surface reconstruction helps to enhance the analysis and prediction of vehicle responses for motion planning and control systems.
We introduce the Road Surface Reconstruction dataset, a real-world, high-resolution, and high-precision dataset collected with a specialized platform in diverse driving conditions.
It covers common road types containing approximately 16,000 pairs of stereo images, original point clouds, and ground-truth depth/disparity maps.
arXiv Detail & Related papers (2023-10-03T17:59:32Z) - The IMPTC Dataset: An Infrastructural Multi-Person Trajectory and
Context Dataset [4.413278371057897]
Inner-city intersections are among the most critical traffic areas for injury and fatal accidents.
We use an intelligent public inner-city intersection in Germany with visual sensor technology.
The resulting dataset consists of eight hours of measurement data.
arXiv Detail & Related papers (2023-07-12T13:46:20Z) - Street-View Image Generation from a Bird's-Eye View Layout [95.36869800896335]
Bird's-Eye View (BEV) Perception has received increasing attention in recent years.
Data-driven simulation for autonomous driving has been a focal point of recent research.
We propose BEVGen, a conditional generative model that synthesizes realistic and spatially consistent surrounding images.
arXiv Detail & Related papers (2023-01-11T18:39:34Z) - Deep Learning based Computer Vision Methods for Complex Traffic
Environments Perception: A Review [22.53793239186955]
This paper conducted an extensive literature review on the applications of computer vision in intelligent transportation systems (ITS) and autonomous driving (AD)
The data challenges are associated with the collection and labeling of training data and its relevance to real world conditions, bias inherent in datasets, the high volume of data needed to be processed, and privacy concerns.
Deep learning (DL) models are commonly too complex for real-time processing on embedded hardware, lack explainability and generalizability, and are hard to test in real-world settings.
arXiv Detail & Related papers (2022-11-09T05:16:01Z) - An Experimental Urban Case Study with Various Data Sources and a Model
for Traffic Estimation [65.28133251370055]
We organize an experimental campaign with video measurement in an area within the urban network of Zurich, Switzerland.
We focus on capturing the traffic state in terms of traffic flow and travel times by ensuring measurements from established thermal cameras.
We propose a simple yet efficient Multiple Linear Regression (MLR) model to estimate travel times with fusion of various data sources.
arXiv Detail & Related papers (2021-08-02T08:13:57Z) - Euro-PVI: Pedestrian Vehicle Interactions in Dense Urban Centers [126.81938540470847]
We propose Euro-PVI, a dataset of pedestrian and bicyclist trajectories.
In this work, we develop a joint inference model that learns an expressive multi-modal shared latent space across agents in the urban scene.
We achieve state of the art results on the nuScenes and Euro-PVI datasets demonstrating the importance of capturing interactions between ego-vehicle and pedestrians (bicyclists) for accurate predictions.
arXiv Detail & Related papers (2021-06-22T15:40:21Z) - LiveMap: Real-Time Dynamic Map in Automotive Edge Computing [14.195521569220448]
LiveMap is a real-time dynamic map that detects, matches, and tracks objects on the road with crowdsourcing data from connected vehicles in sub-second.
We develop the control plane of LiveMap that allows adaptive offloading of vehicle computations.
We implement LiveMap on a small-scale testbed and develop a large-scale network simulator.
arXiv Detail & Related papers (2020-12-16T15:00:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.