論文の概要: QualiTagger: Automating software quality detection in issue trackers
- arxiv url: http://arxiv.org/abs/2504.11053v1
- Date: Tue, 15 Apr 2025 10:40:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-16 22:12:06.779296
- Title: QualiTagger: Automating software quality detection in issue trackers
- Title(参考訳): QualiTagger:イシュートラッカにおけるソフトウェア品質検出の自動化
- Authors: Karthik Shivashankar, Rafael Capilla, Maren Maritsdatter Kruke, Mili Orucevic, Antonio Martini,
- Abstract要約: この研究は、Transformerのような最先端のモデルを使って、テキストが通常、異なる品質特性に関連付けられているものを特定する。
また,オープンアクセス可能なソフトウェアリポジトリからのイシュートラッカにおける品質分布についても検討する。
- 参考スコア(独自算出の注目度): 4.917423556150366
- License:
- Abstract: A systems quality is a major concern for development teams when it evolve. Understanding the effects of a loss of quality in the codebase is crucial to avoid side effects like the appearance of technical debt. Although the identification of these qualities in software requirements described in natural language has been investigated, most of the results are often not applicable in practice, and rely on having been validated on small datasets and limited amount of projects. For many years, machine learning (ML) techniques have been proved as a valid technique to identify and tag terms described in natural language. In order to advance previous works, in this research we use cutting edge models like Transformers, together with a vast dataset mined and curated from GitHub, to identify what text is usually associated with different quality properties. We also study the distribution of such qualities in issue trackers from openly accessible software repositories, and we evaluate our approach both with students from a software engineering course and with its application to recognize security labels in industry.
- Abstract(参考訳): システム品質は、進化するときに開発チームにとって大きな関心事です。
コードベースにおける品質の損失の影響を理解することは、技術的負債の出現のような副作用を避けるために重要です。
自然言語で記述されたソフトウェア要件におけるこれらの品質の識別は研究されているが、ほとんどの結果は実際には適用されないことが多く、小さなデータセットと限られたプロジェクトに依存している。
機械学習(ML)技術は、長年にわたり、自然言語で記述された用語を識別しタグ付けするための有効な手法として証明されてきた。
これまでの作業を前進させるために、Transformersのような最先端のモデルと、GitHubから発掘、キュレーションされた膨大なデータセットを使用して、通常、異なる品質特性に関連付けられたテキストを特定します。
また,オープンにアクセス可能なソフトウェアリポジトリからのイシュートラッカにおける品質分布について検討し,ソフトウェア工学コースの学生によるアプローチと,業界におけるセキュリティラベルの認識への応用について検討した。
関連論文リスト
- Leveraging Large Language Models for Efficient Failure Analysis in Game Development [47.618236610219554]
本稿では,テストの失敗の原因となるコードの変更を自動的に識別する手法を提案する。
このメソッドは、LLM(Large Language Models)を利用して、エラーメッセージと対応するコード変更を関連付ける。
当社のアプローチは新たに作成したデータセットで71%の精度に達しています。
論文 参考訳(メタデータ) (2024-06-11T09:21:50Z) - A Comparative Study of Transformer-based Neural Text Representation
Techniques on Bug Triaging [8.831760500324318]
我々は、バグトリアージのタスクにおいて、ファイントゥーントランスフォーマーベースの言語モデルに関する最初の調査の1つを提供している。
DeBERTaは、開発者とコンポーネントの割り当てのトリアージタスクの中で、最も効果的なテクニックです。
論文 参考訳(メタデータ) (2023-10-10T18:09:32Z) - Using Machine Learning To Identify Software Weaknesses From Software
Requirement Specifications [49.1574468325115]
本研究は、要求仕様からソフトウェア弱点を特定するための効率的な機械学習アルゴリズムを見つけることに焦点を当てる。
ProMISE_exp. Naive Bayes、サポートベクターマシン(SVM)、決定木、ニューラルネットワーク、畳み込みニューラルネットワーク(CNN)アルゴリズムをテストした。
論文 参考訳(メタデータ) (2023-08-10T13:19:10Z) - Modelling Concurrency Bugs Using Machine Learning [0.0]
このプロジェクトは、一般的な機械学習アプローチと最近の機械学習アプローチを比較することを目的としている。
我々は、実生活(同時)プログラムをシミュレートする範囲で生成する合成データセットを定義する。
各種機械学習モデルモデルの基本的な限界に関する仮説を定式化する。
論文 参考訳(メタデータ) (2023-05-08T17:30:24Z) - Lessons from Formally Verified Deployed Software Systems (Extended version) [65.69802414600832]
本稿は、正式に認証されたシステムを作成し、実際に使用するためにデプロイした各種のアプリケーション分野のプロジェクトについて検討する。
使用する技術、適用の形式、得られた結果、そしてソフトウェア産業が形式的な検証技術やツールの恩恵を受ける能力について示すべき教訓を考察する。
論文 参考訳(メタデータ) (2023-01-05T18:18:46Z) - Cross Project Software Vulnerability Detection via Domain Adaptation and
Max-Margin Principle [21.684043656053106]
ソフトウェア脆弱性(SV)は、コンピュータソフトウェアの普及により、一般的で深刻な問題となっている。
これら2つの重要な問題に対処するための新しいエンドツーエンドアプローチを提案する。
提案手法は, SVDにおける最重要尺度であるF1尺度の精度を, 使用データセットの2番目に高い手法と比較して1.83%から6.25%に向上させる。
論文 参考訳(メタデータ) (2022-09-19T23:47:22Z) - On the validity of pre-trained transformers for natural language
processing in the software engineering domain [78.32146765053318]
ソフトウェア工学データを用いて訓練されたBERT変換器モデルと一般領域データに基づく変換器との比較を行った。
ソフトウェアエンジニアリングのコンテキストを理解するために必要なタスクに対しては,ソフトウェアエンジニアリングデータの事前学習が重要であることを示す。
論文 参考訳(メタデータ) (2021-09-10T08:46:31Z) - Detecting Requirements Smells With Deep Learning: Experiences,
Challenges and Future Work [9.44316959798363]
本研究の目的は,手動でラベル付きデータセットを作成し,アンサンブル学習,深層学習(DL),単語埋め込みや伝達学習といった手法を用いて一般化問題を克服することで,従来の作業を改善することである。
現在の調査結果は、データセットが不均衡であり、どのクラスをもっと追加すべきかを示している。
論文 参考訳(メタデータ) (2021-08-06T12:45:15Z) - Anomaly Detection Based on Selection and Weighting in Latent Space [73.01328671569759]
SWADと呼ばれる新しい選択および重み付けに基づく異常検出フレームワークを提案する。
ベンチマークと実世界のデータセットによる実験は、SWADの有効性と優位性を示している。
論文 参考訳(メタデータ) (2021-03-08T10:56:38Z) - Automatic Feasibility Study via Data Quality Analysis for ML: A
Case-Study on Label Noise [21.491392581672198]
我々はSnoopyを紹介し、データサイエンティストと機械学習エンジニアが体系的で理論的に確立された実現可能性研究を行うのを支援することを目的としている。
我々は、基礎となるタスクの既約誤差を推定し、この問題にアプローチする。
エンド・ツー・エンドの実験では、ユーザーがかなりのラベリング時間と金銭的努力を節約できることを示す。
論文 参考訳(メタデータ) (2020-10-16T14:21:19Z) - Adversarial Knowledge Transfer from Unlabeled Data [62.97253639100014]
本稿では,インターネット規模の未ラベルデータから知識を伝達し,分類器の性能を向上させるための新しいAdversarial Knowledge Transferフレームワークを提案する。
我々の手法の重要な新しい側面は、ラベル付けされていないソースデータは、ラベル付けされたターゲットデータと異なるクラスであることができ、個別のプリテキストタスクを定義する必要がないことである。
論文 参考訳(メタデータ) (2020-08-13T08:04:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。