論文の概要: Using LLMs as prompt modifier to avoid biases in AI image generators
- arxiv url: http://arxiv.org/abs/2504.11104v1
- Date: Tue, 15 Apr 2025 11:52:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-16 22:12:28.495107
- Title: Using LLMs as prompt modifier to avoid biases in AI image generators
- Title(参考訳): AI画像生成装置におけるバイアス回避のためのプロンプト修飾器としてLLMを使用する
- Authors: René Peinl,
- Abstract要約: LLM(Large Language Models)は、ユーザプロンプトを変更することで、テキストから画像生成システムにおけるバイアスを低減する。
安定拡散XL, 3.5, Fluxを用いた実験により, LLMを修飾したプロンプトは, 画像生成装置自体を変更することなく, 画像の多様性を著しく向上し, バイアスを低減できることが示された。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This study examines how Large Language Models (LLMs) can reduce biases in text-to-image generation systems by modifying user prompts. We define bias as a model's unfair deviation from population statistics given neutral prompts. Our experiments with Stable Diffusion XL, 3.5 and Flux demonstrate that LLM-modified prompts significantly increase image diversity and reduce bias without the need to change the image generators themselves. While occasionally producing results that diverge from original user intent for elaborate prompts, this approach generally provides more varied interpretations of underspecified requests rather than superficial variations. The method works particularly well for less advanced image generators, though limitations persist for certain contexts like disability representation. All prompts and generated images are available at https://iisys-hof.github.io/llm-prompt-img-gen/
- Abstract(参考訳): 本研究では,Large Language Models (LLMs) がユーザプロンプトを変更することで,テキスト・画像生成システムのバイアスを軽減する方法について検討する。
我々は偏見を、中立なプロンプトが与えられた人口統計からの不公平な偏差のモデルとして定義する。
安定拡散XL, 3.5, Fluxを用いた実験により, LLMを修飾したプロンプトは, 画像生成装置自体を変更することなく, 画像の多様性を著しく向上し, バイアスを低減できることが示された。
時折、精巧なプロンプトのために元のユーザ意図から切り離された結果を生成するが、このアプローチは表面的なバリエーションよりも、不特定要求のより多様な解釈を提供するのが一般的である。
この方法は、特により進んだイメージジェネレータではうまく機能するが、障害表現のような特定のコンテキストでは制限が持続する。
すべてのプロンプトと生成された画像はhttps://iisys-hof.github.io/llm-prompt-img-gen/で公開されている。
関連論文リスト
- Prompt Recovery for Image Generation Models: A Comparative Study of Discrete Optimizers [58.50071292008407]
本稿では,近年の離散最適化手法の突発的逆転問題に対する直接比較について述べる。
逆プロンプトと基底真理画像とのCLIP類似性に着目し, 逆プロンプトが生成する画像と基底真理画像との類似性について検討した。
論文 参考訳(メタデータ) (2024-08-12T21:35:59Z) - VersusDebias: Universal Zero-Shot Debiasing for Text-to-Image Models via SLM-Based Prompt Engineering and Generative Adversary [8.24274551090375]
本稿では,任意のテキスト・トゥ・イメージ(T2I)モデルにおけるバイアスに対する新奇で普遍的なデバイアスフレームワークであるVersusDebiasを紹介する。
自己適応モジュールは、プロセス後の幻覚と複数の属性を同時にデバイアスする特別な属性配列を生成する。
ゼロショットと少数ショットの両方のシナリオでは、VersusDebiasは既存のメソッドよりも優れており、例外的なユーティリティを示している。
論文 参考訳(メタデータ) (2024-07-28T16:24:07Z) - MoESD: Mixture of Experts Stable Diffusion to Mitigate Gender Bias [23.10522891268232]
テキスト・ツー・イメージ・モデルにおいて、ジェンダーバイアスを軽減するためのMixture-of-Expertsアプローチを導入する。
画像品質を維持しながら, 性別偏見の軽減に成功していることを示す。
論文 参考訳(メタデータ) (2024-06-25T14:59:31Z) - ITI-GEN: Inclusive Text-to-Image Generation [56.72212367905351]
本研究では,人書きプロンプトに基づいて画像を生成する包括的テキスト・画像生成モデルについて検討する。
いくつかの属性に対して、画像はテキストよりも概念を表現的に表現できることを示す。
Inclusive Text-to- Image GENeration に容易に利用可能な参照画像を活用する新しいアプローチ ITI-GEN を提案する。
論文 参考訳(メタデータ) (2023-09-11T15:54:30Z) - Reverse Stable Diffusion: What prompt was used to generate this image? [73.10116197883303]
本研究では, 生成拡散モデルにより生成された画像に対して, 迅速な埋め込みを予測できる課題について検討する。
本稿では,複数ラベルの語彙分類を目的とする共同学習フレームワークを提案する。
我々はDiffusionDBデータセットの実験を行い、安定拡散によって生成された画像からテキストプロンプトを予測する。
論文 参考訳(メタデータ) (2023-08-02T23:39:29Z) - LLM-grounded Diffusion: Enhancing Prompt Understanding of Text-to-Image
Diffusion Models with Large Language Models [62.75006608940132]
本研究は,テキストから画像への拡散モデルにおいて,迅速な理解能力を高めることを提案する。
提案手法は,新たな2段階プロセスにおいて,事前訓練された大規模言語モデルを用いてグラウンドド生成を行う。
提案手法は,画像の正確な生成において,ベース拡散モデルといくつかの強いベースラインを著しく上回る。
論文 参考訳(メタデータ) (2023-05-23T03:59:06Z) - SUR-adapter: Enhancing Text-to-Image Pre-trained Diffusion Models with
Large Language Models [56.88192537044364]
本研究では,事前学習拡散モデルに対するセマンティック・アダプタ (SUR-adapter) と呼ばれる簡易なパラメータ効率の良い微調整手法を提案する。
ユーザエクスペリエンスの向上により,テキストから画像への拡散モデルの使いやすさが向上する。
論文 参考訳(メタデータ) (2023-05-09T05:48:38Z) - Cap2Aug: Caption guided Image to Image data Augmentation [41.53127698828463]
Cap2Augは、画像キャプションをテキストプロンプトとして使用する画像から画像への拡散モデルに基づくデータ拡張戦略である。
限られた訓練画像からキャプションを生成し,これらのキャプションを用いて画像間安定拡散モデルを用いてトレーニング画像を編集する。
この戦略は、トレーニング画像に似た画像の拡張バージョンを生成するが、サンプル全体にわたって意味的な多様性を提供する。
論文 参考訳(メタデータ) (2022-12-11T04:37:43Z) - Bayesian Prompt Learning for Image-Language Model Generalization [64.50204877434878]
我々はベイズ法の正規化能力を用いて、変分推論問題としてプロンプト学習をフレーム化する。
提案手法は,プロンプト空間を正規化し,目に見えないプロンプトへの過剰適合を低減し,目に見えないプロンプトのプロンプト一般化を改善する。
ベイジアン・プロンプト学習がプロンプト空間の適切なカバレッジを提供する15のベンチマークを実証的に示す。
論文 参考訳(メタデータ) (2022-10-05T17:05:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。