Bypassing LLM Guardrails: An Empirical Analysis of Evasion Attacks against Prompt Injection and Jailbreak Detection Systems
- URL: http://arxiv.org/abs/2504.11168v3
- Date: Mon, 14 Jul 2025 15:27:11 GMT
- Title: Bypassing LLM Guardrails: An Empirical Analysis of Evasion Attacks against Prompt Injection and Jailbreak Detection Systems
- Authors: William Hackett, Lewis Birch, Stefan Trawicki, Neeraj Suri, Peter Garraghan,
- Abstract summary: Large Language Models (LLMs) guardrail systems are designed to protect against prompt injection and jailbreak attacks.<n>We demonstrate two approaches for bypassing prompt injection and jailbreak detection systems.<n>We show that both methods can be used to evade detection while maintaining adversarial utility.
- Score: 4.225223514207515
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) guardrail systems are designed to protect against prompt injection and jailbreak attacks. However, they remain vulnerable to evasion techniques. We demonstrate two approaches for bypassing LLM prompt injection and jailbreak detection systems via traditional character injection methods and algorithmic Adversarial Machine Learning (AML) evasion techniques. Through testing against six prominent protection systems, including Microsoft's Azure Prompt Shield and Meta's Prompt Guard, we show that both methods can be used to evade detection while maintaining adversarial utility achieving in some instances up to 100% evasion success. Furthermore, we demonstrate that adversaries can enhance Attack Success Rates (ASR) against black-box targets by leveraging word importance ranking computed by offline white-box models. Our findings reveal vulnerabilities within current LLM protection mechanisms and highlight the need for more robust guardrail systems.
Related papers
- CAVGAN: Unifying Jailbreak and Defense of LLMs via Generative Adversarial Attacks on their Internal Representations [9.952498288063532]
Security alignment enables the Large Language Model (LLM) to gain the protection against malicious queries.<n>We analyze the security protection mechanism of the LLM, and propose a framework that combines attack and defense.<n>Our method is based on the linearly separable property of LLM intermediate layer embedding, as well as the essence of jailbreak attack.
arXiv Detail & Related papers (2025-07-08T14:45:21Z) - Attention Slipping: A Mechanistic Understanding of Jailbreak Attacks and Defenses in LLMs [61.916827858666906]
We reveal a universal phenomenon that occurs during jailbreak attacks: Attention Slipping.<n>We show Attention Slipping is consistent across various jailbreak methods, including gradient-based token replacement, prompt-level template refinement, and in-context learning.<n>We propose Attention Sharpening, a new defense that directly counters Attention Slipping by sharpening the attention score distribution using temperature scaling.
arXiv Detail & Related papers (2025-07-06T12:19:04Z) - AutoAdv: Automated Adversarial Prompting for Multi-Turn Jailbreaking of Large Language Models [0.0]
Large Language Models (LLMs) continue to exhibit vulnerabilities to jailbreaking attacks.<n>We present AutoAdv, a novel framework that automates adversarial prompt generation.<n>We show that our attacks achieve jailbreak success rates of up to 86% for harmful content generation.
arXiv Detail & Related papers (2025-04-18T08:38:56Z) - LightDefense: A Lightweight Uncertainty-Driven Defense against Jailbreaks via Shifted Token Distribution [84.2846064139183]
Large Language Models (LLMs) face threats from jailbreak prompts.<n>We propose LightDefense, a lightweight defense mechanism targeted at white-box models.
arXiv Detail & Related papers (2025-04-02T09:21:26Z) - Layer-Level Self-Exposure and Patch: Affirmative Token Mitigation for Jailbreak Attack Defense [55.77152277982117]
We introduce Layer-AdvPatcher, a methodology designed to defend against jailbreak attacks.<n>We use an unlearning strategy to patch specific layers within large language models through self-augmented datasets.<n>Our framework reduces the harmfulness and attack success rate of jailbreak attacks.
arXiv Detail & Related papers (2025-01-05T19:06:03Z) - FlexLLM: Exploring LLM Customization for Moving Target Defense on Black-Box LLMs Against Jailbreak Attacks [7.31505609352525]
Defense in large language models (LLMs) is crucial to counter the numerous attackers exploiting these systems to generate harmful content.
We propose a moving target defense approach that alters decoding hyper parameters to enhance model robustness.
Our results demonstrate that our defense is the most effective against jailbreak attacks in three of the models tested.
arXiv Detail & Related papers (2024-12-10T17:02:28Z) - Attention Tracker: Detecting Prompt Injection Attacks in LLMs [62.247841717696765]
Large Language Models (LLMs) have revolutionized various domains but remain vulnerable to prompt injection attacks.
We introduce the concept of the distraction effect, where specific attention heads shift focus from the original instruction to the injected instruction.
We propose Attention Tracker, a training-free detection method that tracks attention patterns on instruction to detect prompt injection attacks.
arXiv Detail & Related papers (2024-11-01T04:05:59Z) - Deciphering the Chaos: Enhancing Jailbreak Attacks via Adversarial Prompt Translation [71.92055093709924]
We propose a novel method that "translates" garbled adversarial prompts into coherent and human-readable natural language adversarial prompts.<n>It also offers a new approach to discovering effective designs for jailbreak prompts, advancing the understanding of jailbreak attacks.<n>Our method achieves over 90% attack success rates against Llama-2-Chat models on AdvBench, despite their outstanding resistance to jailbreak attacks.
arXiv Detail & Related papers (2024-10-15T06:31:04Z) - LLM Safeguard is a Double-Edged Sword: Exploiting False Positives for Denial-of-Service Attacks [7.013820690538764]
We study attacks that exploit the emphfalse negatives of safeguard methods.<n>The malicious attackers could also exploit false positives of safeguards, leading to a denial-of-service (DoS) affecting users.
arXiv Detail & Related papers (2024-10-03T19:07:53Z) - MoJE: Mixture of Jailbreak Experts, Naive Tabular Classifiers as Guard for Prompt Attacks [2.873719680183099]
This paper advocates for the significance of jailbreak attack prevention on Large Language Models (LLMs)
We introduce MoJE, a novel guardrail architecture designed to surpass current limitations in existing state-of-the-art guardrails.
MoJE excels in detecting jailbreak attacks while maintaining minimal computational overhead during model inference.
arXiv Detail & Related papers (2024-09-26T10:12:19Z) - Defensive Prompt Patch: A Robust and Interpretable Defense of LLMs against Jailbreak Attacks [59.46556573924901]
This paper introduces Defensive Prompt Patch (DPP), a novel prompt-based defense mechanism for large language models (LLMs)
Unlike previous approaches, DPP is designed to achieve a minimal Attack Success Rate (ASR) while preserving the high utility of LLMs.
Empirical results conducted on LLAMA-2-7B-Chat and Mistral-7B-Instruct-v0.2 models demonstrate the robustness and adaptability of DPP.
arXiv Detail & Related papers (2024-05-30T14:40:35Z) - AdaShield: Safeguarding Multimodal Large Language Models from Structure-based Attack via Adaptive Shield Prompting [54.931241667414184]
We propose textbfAdaptive textbfShield Prompting, which prepends inputs with defense prompts to defend MLLMs against structure-based jailbreak attacks.
Our methods can consistently improve MLLMs' robustness against structure-based jailbreak attacks.
arXiv Detail & Related papers (2024-03-14T15:57:13Z) - Fight Back Against Jailbreaking via Prompt Adversarial Tuning [23.55544992740663]
Large Language Models (LLMs) are susceptible to jailbreaking attacks.
We propose an approach named Prompt Adversarial Tuning (PAT) that trains a prompt control attached to the user prompt as a guard prefix.
Our method is effective against both grey-box and black-box attacks, reducing the success rate of advanced attacks to nearly 0%.
arXiv Detail & Related papers (2024-02-09T09:09:39Z) - Benchmarking and Defending Against Indirect Prompt Injection Attacks on Large Language Models [79.0183835295533]
We introduce the first benchmark for indirect prompt injection attacks, named BIPIA, to assess the risk of such vulnerabilities.<n>Our analysis identifies two key factors contributing to their success: LLMs' inability to distinguish between informational context and actionable instructions, and their lack of awareness in avoiding the execution of instructions within external content.<n>We propose two novel defense mechanisms-boundary awareness and explicit reminder-to address these vulnerabilities in both black-box and white-box settings.
arXiv Detail & Related papers (2023-12-21T01:08:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.