AutoAdv: Automated Adversarial Prompting for Multi-Turn Jailbreaking of Large Language Models
- URL: http://arxiv.org/abs/2507.01020v1
- Date: Fri, 18 Apr 2025 08:38:56 GMT
- Title: AutoAdv: Automated Adversarial Prompting for Multi-Turn Jailbreaking of Large Language Models
- Authors: Aashray Reddy, Andrew Zagula, Nicholas Saban,
- Abstract summary: Large Language Models (LLMs) continue to exhibit vulnerabilities to jailbreaking attacks.<n>We present AutoAdv, a novel framework that automates adversarial prompt generation.<n>We show that our attacks achieve jailbreak success rates of up to 86% for harmful content generation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) continue to exhibit vulnerabilities to jailbreaking attacks: carefully crafted malicious inputs intended to circumvent safety guardrails and elicit harmful responses. As such, we present AutoAdv, a novel framework that automates adversarial prompt generation to systematically evaluate and expose vulnerabilities in LLM safety mechanisms. Our approach leverages a parametric attacker LLM to produce semantically disguised malicious prompts through strategic rewriting techniques, specialized system prompts, and optimized hyperparameter configurations. The primary contribution of our work is a dynamic, multi-turn attack methodology that analyzes failed jailbreak attempts and iteratively generates refined follow-up prompts, leveraging techniques such as roleplaying, misdirection, and contextual manipulation. We quantitatively evaluate attack success rate (ASR) using the StrongREJECT (arXiv:2402.10260 [cs.CL]) framework across sequential interaction turns. Through extensive empirical evaluation of state-of-the-art models--including ChatGPT, Llama, and DeepSeek--we reveal significant vulnerabilities, with our automated attacks achieving jailbreak success rates of up to 86% for harmful content generation. Our findings reveal that current safety mechanisms remain susceptible to sophisticated multi-turn attacks, emphasizing the urgent need for more robust defense strategies.
Related papers
- Scalable Defense against In-the-wild Jailbreaking Attacks with Safety Context Retrieval [25.17143802138141]
Large Language Models (LLMs) are vulnerable to jailbreaking attacks, wherein adversaries exploit carefully engineered prompts to induce harmful or unethical responses.<n>We propose Safety Context Retrieval (SCR), a scalable and robust safeguarding paradigm for LLMs against jailbreaking.
arXiv Detail & Related papers (2025-05-21T16:58:14Z) - Cannot See the Forest for the Trees: Invoking Heuristics and Biases to Elicit Irrational Choices of LLMs [83.11815479874447]
We propose a novel jailbreak attack framework, inspired by cognitive decomposition and biases in human cognition.<n>We employ cognitive decomposition to reduce the complexity of malicious prompts and relevance bias to reorganize prompts.<n>We also introduce a ranking-based harmfulness evaluation metric that surpasses the traditional binary success-or-failure paradigm.
arXiv Detail & Related papers (2025-05-03T05:28:11Z) - MIRAGE: Multimodal Immersive Reasoning and Guided Exploration for Red-Team Jailbreak Attacks [85.3303135160762]
MIRAGE is a novel framework that exploits narrative-driven context and role immersion to circumvent safety mechanisms in Multimodal Large Language Models.<n>It achieves state-of-the-art performance, improving attack success rates by up to 17.5% over the best baselines.<n>We demonstrate that role immersion and structured semantic reconstruction can activate inherent model biases, facilitating the model's spontaneous violation of ethical safeguards.
arXiv Detail & Related papers (2025-03-24T20:38:42Z) - Temporal Context Awareness: A Defense Framework Against Multi-turn Manipulation Attacks on Large Language Models [0.0]
Large Language Models (LLMs) are increasingly vulnerable to sophisticated multi-turn manipulation attacks.<n>This paper introduces the Temporal Context Awareness framework, a novel defense mechanism designed to address this challenge.<n>Preliminary evaluations on simulated adversarial scenarios demonstrate the framework's potential to identify subtle manipulation patterns.
arXiv Detail & Related papers (2025-03-18T22:30:17Z) - Reasoning-Augmented Conversation for Multi-Turn Jailbreak Attacks on Large Language Models [53.580928907886324]
Reasoning-Augmented Conversation is a novel multi-turn jailbreak framework.<n>It reformulates harmful queries into benign reasoning tasks.<n>We show that RACE achieves state-of-the-art attack effectiveness in complex conversational scenarios.
arXiv Detail & Related papers (2025-02-16T09:27:44Z) - Jailbreaking and Mitigation of Vulnerabilities in Large Language Models [8.345554966569479]
Large Language Models (LLMs) have transformed artificial intelligence by advancing natural language understanding and generation.<n>Despite these advancements, LLMs have shown considerable vulnerabilities, particularly to prompt injection and jailbreaking attacks.<n>This review analyzes the state of research on these vulnerabilities and presents available defense strategies.
arXiv Detail & Related papers (2024-10-20T00:00:56Z) - LLMs can be Dangerous Reasoners: Analyzing-based Jailbreak Attack on Large Language Models [21.02295266675853]
We propose a novel black-box jailbreak attack method, Analyzing-based Jailbreak (ABJ)<n>ABJ comprises two independent attack paths, which exploit the model's multimodal reasoning capabilities to bypass safety mechanisms.<n>Our work reveals a new type of safety risk and highlights the urgent need to mitigate implicit vulnerabilities in the model's reasoning process.
arXiv Detail & Related papers (2024-07-23T06:14:41Z) - AutoJailbreak: Exploring Jailbreak Attacks and Defenses through a Dependency Lens [83.08119913279488]
We present a systematic analysis of the dependency relationships in jailbreak attack and defense techniques.
We propose three comprehensive, automated, and logical frameworks.
We show that the proposed ensemble jailbreak attack and defense framework significantly outperforms existing research.
arXiv Detail & Related papers (2024-06-06T07:24:41Z) - Learning diverse attacks on large language models for robust red-teaming and safety tuning [126.32539952157083]
Red-teaming, or identifying prompts that elicit harmful responses, is a critical step in ensuring the safe deployment of large language models.<n>We show that even with explicit regularization to favor novelty and diversity, existing approaches suffer from mode collapse or fail to generate effective attacks.<n>We propose to use GFlowNet fine-tuning, followed by a secondary smoothing phase, to train the attacker model to generate diverse and effective attack prompts.
arXiv Detail & Related papers (2024-05-28T19:16:17Z) - AdaShield: Safeguarding Multimodal Large Language Models from Structure-based Attack via Adaptive Shield Prompting [54.931241667414184]
We propose textbfAdaptive textbfShield Prompting, which prepends inputs with defense prompts to defend MLLMs against structure-based jailbreak attacks.
Our methods can consistently improve MLLMs' robustness against structure-based jailbreak attacks.
arXiv Detail & Related papers (2024-03-14T15:57:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.