論文の概要: MuSeD: A Multimodal Spanish Dataset for Sexism Detection in Social Media Videos
- arxiv url: http://arxiv.org/abs/2504.11169v1
- Date: Tue, 15 Apr 2025 13:16:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-24 01:00:43.271586
- Title: MuSeD: A Multimodal Spanish Dataset for Sexism Detection in Social Media Videos
- Title(参考訳): MuSeD: ソーシャルメディアビデオにおける性行為検出のためのマルチモーダルなスペイン語データセット
- Authors: Laura De Grazia, Pol Pastells, Mauro Vázquez Chas, Desmond Elliott, Danae Sánchez Villegas, Mireia Farrús, Mariona Taulé,
- Abstract要約: 我々は、TikTokとBitChuteから抽出された11時間分のビデオを$approx$で提供する、性差別検出のための新しいマルチモーダルスペイン語データセットであるMuSeDを紹介した。
視覚情報は、人間とモデルの両方に性差別的コンテンツをラベル付けする上で重要な役割を担っている。
- 参考スコア(独自算出の注目度): 12.555579923843641
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sexism is generally defined as prejudice and discrimination based on sex or gender, affecting every sector of society, from social institutions to relationships and individual behavior. Social media platforms amplify the impact of sexism by conveying discriminatory content not only through text but also across multiple modalities, highlighting the critical need for a multimodal approach to the analysis of sexism online. With the rise of social media platforms where users share short videos, sexism is increasingly spreading through video content. Automatically detecting sexism in videos is a challenging task, as it requires analyzing the combination of verbal, audio, and visual elements to identify sexist content. In this study, (1) we introduce MuSeD, a new Multimodal Spanish dataset for Sexism Detection consisting of $\approx$ 11 hours of videos extracted from TikTok and BitChute; (2) we propose an innovative annotation framework for analyzing the contribution of textual and multimodal labels in the classification of sexist and non-sexist content; and (3) we evaluate a range of large language models (LLMs) and multimodal LLMs on the task of sexism detection. We find that visual information plays a key role in labeling sexist content for both humans and models. Models effectively detect explicit sexism; however, they struggle with implicit cases, such as stereotypes, instances where annotators also show low agreement. This highlights the inherent difficulty of the task, as identifying implicit sexism depends on the social and cultural context.
- Abstract(参考訳): 性差別は一般的に、性別や性別に基づく偏見と差別として定義され、社会のあらゆる分野、社会制度、関係性、個人の行動に影響を及ぼす。
ソーシャルメディアプラットフォームは、テキストだけでなく、複数のモダリティを通じて差別的コンテンツを伝達することで、性差別の影響を増幅し、オンライン上での性差別の分析に対するマルチモーダルなアプローチの必要性を強調している。
ユーザーがショートビデオを共有するソーシャルメディアプラットフォームの増加に伴い、性差別はビデオコンテンツを通じてますます広まりつつある。
ビデオにおける性差別を自動的に検出することは、性差別の内容を特定するために、言葉、音声、視覚要素の組み合わせを分析する必要があるため、難しい作業である。
本研究では,(1)TikTok と BitChute から抽出したビデオ 11 時間分の$\approx$ 11 のセクシズム検出用マルチモーダルスペイン語データセットである MuSeD を紹介し,(2) セクシズム検出のタスクにおいて,性差別と非セクシズムの分類におけるテキストラベルとマルチモーダルラベルの寄与を分析する革新的なアノテーションフレームワークを提案し,(3) 大規模言語モデル (LLM) とマルチモーダル LLM の範囲を評価した。
視覚情報は、人間とモデルの両方に性差別的コンテンツをラベル付けする上で重要な役割を担っている。
モデルは露骨な性差別を効果的に検出するが、ステレオタイプ、アノテータが低一致を示すインスタンスのような暗黙のケースと競合する。
これは、暗黙の性差別を識別することが社会的・文化的文脈に依存するため、タスクの本質的な難しさを強調している。
関連論文リスト
- Gender Bias in Text-to-Video Generation Models: A case study of Sora [63.064204206220936]
本研究では,OpenAIのテキスト・ビデオ生成モデルであるSoraにおけるジェンダーバイアスの存在について検討した。
性別ニュートラルとステレオタイププロンプトの多種多様なセットから生成されたビデオを分析し、バイアスの有意な証拠を明らかにした。
論文 参考訳(メタデータ) (2024-12-30T18:08:13Z) - PanoSent: A Panoptic Sextuple Extraction Benchmark for Multimodal Conversational Aspect-based Sentiment Analysis [74.41260927676747]
本稿では,マルチモーダル対話感分析(ABSA)を導入することでギャップを埋める。
タスクをベンチマークするために、手動と自動の両方で注釈付けされたデータセットであるPanoSentを構築し、高品質、大規模、マルチモーダル、マルチ言語主義、マルチシナリオを特徴とし、暗黙の感情要素と明示的な感情要素の両方をカバーする。
課題を効果的に解決するために,新しい多モーダルな大規模言語モデル(すなわちSentica)とパラフレーズベースの検証機構とともに,新しい感覚の連鎖推論フレームワークを考案した。
論文 参考訳(メタデータ) (2024-08-18T13:51:01Z) - GenderBias-\emph{VL}: Benchmarking Gender Bias in Vision Language Models via Counterfactual Probing [72.0343083866144]
本稿では,GenderBias-emphVLベンチマークを用いて,大規模視覚言語モデルにおける職業関連性バイアスの評価を行う。
ベンチマークを用いて15のオープンソースLVLMと最先端の商用APIを広範囲に評価した。
既存のLVLMでは男女差が広くみられた。
論文 参考訳(メタデータ) (2024-06-30T05:55:15Z) - A multitask learning framework for leveraging subjectivity of annotators to identify misogyny [47.175010006458436]
本研究では,誤識別システムの性能向上を目的としたマルチタスク学習手法を提案する。
6つのプロファイルグループにまたがる性別と年齢を考慮したモデル設計において,アノテータからさまざまな視点を取り入れた。
本研究は、コンテンツモデレーションを推進し、効果的なオンラインモデレーションシステムを構築するための多様な視点を受け入れることの重要性を強調している。
論文 参考訳(メタデータ) (2024-06-22T15:06:08Z) - Bilingual Sexism Classification: Fine-Tuned XLM-RoBERTa and GPT-3.5 Few-Shot Learning [0.7874708385247352]
本研究の目的は、自然言語処理モデルを活用することにより、バイリンガル文脈(英語とスペイン語)における性差別の識別を改善することである。
我々はXLM-RoBERTaモデルを微調整し、性差別的コンテンツを分類するための数発の学習プロンプトでGPT-3.5を別々に使用した。
論文 参考訳(メタデータ) (2024-06-11T14:15:33Z) - VisoGender: A dataset for benchmarking gender bias in image-text pronoun
resolution [80.57383975987676]
VisoGenderは、視覚言語モデルで性別バイアスをベンチマークするための新しいデータセットである。
We focus to occupation-related biases in a hegemonic system of binary gender, inspired by Winograd and Winogender schemas。
我々は、最先端の視覚言語モデルをいくつかベンチマークし、それらが複雑な場面における二項性解消のバイアスを示すことを発見した。
論文 参考訳(メタデータ) (2023-06-21T17:59:51Z) - SemEval-2023 Task 10: Explainable Detection of Online Sexism [5.542286527528687]
オンライン性差別(EDOS)の説明可能な検出に関するSemEval Task 10について紹介する。
i)セクシズムの細粒度ベクトルを含むセクシズムコンテンツの新しい階層的分類,i)細粒度ラベルによる2万件のソーシャルメディアコメントデータセット,およびモデル適応のための大きな未ラベルデータセット,iii)ベースラインモデル,および,課題への参加者の提出方法,結果,エラーの分析である。
論文 参考訳(メタデータ) (2023-03-07T20:28:39Z) - TIB-VA at SemEval-2022 Task 5: A Multimodal Architecture for the
Detection and Classification of Misogynous Memes [9.66022279280394]
本稿では,テキストと視覚的特徴を組み合わせたマルチモーダルアーキテクチャを提案する。
課題は、ある文書が偽造であるかどうかを分類することである。
論文 参考訳(メタデータ) (2022-04-13T11:03:21Z) - SWSR: A Chinese Dataset and Lexicon for Online Sexism Detection [9.443571652110663]
中国初の性差別データセットであるSina Weibo Sexism Review(SWSR)データセットと、中国の大型レキシコンSexHateLexを提案する。
SWSRデータセットは、(i)性差別または非性差別、(ii)性差別カテゴリー、(iii)ターゲットタイプなど、さまざまなレベルの粒度のラベルを提供する。
我々は、最先端の機械学習モデルを用いた3つの性差別分類タスクの実験を行う。
論文 参考訳(メタデータ) (2021-08-06T12:06:40Z) - Gender bias in magazines oriented to men and women: a computational
approach [58.720142291102135]
女性指向の雑誌の内容と男性指向の雑誌の内容を比較する。
トピック・モデリングの手法により、雑誌で議論されている主要なテーマを特定し、これらのトピックの存在が時間とともに雑誌間でどの程度異なるかを定量化する。
以上の結果から,セクシュアオブジェクトとしての家族,ビジネス,女性の出現頻度は,時間とともに消失する傾向にあることが示唆された。
論文 参考訳(メタデータ) (2020-11-24T14:02:49Z) - "Call me sexist, but...": Revisiting Sexism Detection Using
Psychological Scales and Adversarial Samples [2.029924828197095]
我々は、性差別の異なる側面を心理学的尺度でそれらの実践に基礎を置いて概説する。
このスケールから、ソーシャルメディアにおける性差別のためのコードブックを導き、既存のデータセットや新しいデータセットに注釈を付けるために使用します。
結果は、現在の機械学習モデルは、性差別の非常に狭い言語マーカーの集合を拾い上げ、ドメイン外の例にうまく一般化しないことを示唆している。
論文 参考訳(メタデータ) (2020-04-27T13:07:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。