Efficient Distributed Retrieval-Augmented Generation for Enhancing Language Model Performance
- URL: http://arxiv.org/abs/2504.11197v2
- Date: Wed, 16 Apr 2025 03:32:23 GMT
- Title: Efficient Distributed Retrieval-Augmented Generation for Enhancing Language Model Performance
- Authors: Shangyu Liu, Zhenzhe Zheng, Xiaoyao Huang, Fan Wu, Guihai Chen, Jie Wu,
- Abstract summary: Small language models (SLMs) support efficient deployments on resource-constrained edge devices, but their limited capacity compromises inference performance.<n>Retrieval-augmented generation (RAG) is a promising solution to enhance model performance by integrating external databases, without requiring intensive on-device model retraining.<n>We propose DRAGON, a distributed RAG framework to enhance on-device SLMs through both general and personal knowledge without the risk of leaking document privacy.
- Score: 34.695803671702606
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Small language models (SLMs) support efficient deployments on resource-constrained edge devices, but their limited capacity compromises inference performance. Retrieval-augmented generation (RAG) is a promising solution to enhance model performance by integrating external databases, without requiring intensive on-device model retraining. However, large-scale public databases and user-specific private contextual documents are typically located on the cloud and the device separately, while existing RAG implementations are primarily centralized. To bridge this gap, we propose DRAGON, a distributed RAG framework to enhance on-device SLMs through both general and personal knowledge without the risk of leaking document privacy. Specifically, DRAGON decomposes multi-document RAG into multiple parallel token generation processes performed independently and locally on the cloud and the device, and employs a newly designed Speculative Aggregation, a dual-side speculative algorithm to avoid frequent output synchronization between the cloud and device. A new scheduling algorithm is further introduced to identify the optimal aggregation side based on real-time network conditions. Evaluations on real-world hardware testbed demonstrate a significant performance improvement of DRAGON-up to 1.9x greater gains over standalone SLM compared to the centralized RAG, substantial reduction in per-token latency, and negligible Time to First Token (TTFT) overhead.
Related papers
- TeleRAG: Efficient Retrieval-Augmented Generation Inference with Lookahead Retrieval [10.268774281394261]
Retrieval-augmented generation (RAG) extends large language models (LLMs) with external data sources to enhance factual correctness and domain coverage.<n>Modern RAG pipelines rely on large datastores, leading to system challenges in latency-sensitive deployments.<n>We propose TeleRAG, an efficient inference system that reduces RAG latency with minimal GPU memory requirements.
arXiv Detail & Related papers (2025-02-28T11:32:22Z) - Improving Retrieval-Augmented Generation through Multi-Agent Reinforcement Learning [51.54046200512198]
Retrieval-augmented generation (RAG) is extensively utilized to incorporate external, current knowledge into large language models.
A standard RAG pipeline may comprise several components, such as query rewriting, document retrieval, document filtering, and answer generation.
To overcome these challenges, we propose treating the RAG pipeline as a multi-agent cooperative task, with each component regarded as an RL agent.
arXiv Detail & Related papers (2025-01-25T14:24:50Z) - Enabling Efficient On-Device Fine-Tuning of LLMs Using Only Inference Engines [17.539008562641303]
Large Language Models (LLMs) are currently pre-trained and fine-tuned on large cloud servers.
Next frontier is LLM personalization, where a foundation model can be fine-tuned with user/task-specific data.
Fine-tuning on resource-constrained edge devices presents significant challenges due to substantial memory and computational demands.
arXiv Detail & Related papers (2024-09-23T20:14:09Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
We propose a.
Federated Anomaly Detection framework named PeFAD with the increasing privacy concerns.
We conduct extensive evaluations on four real datasets, where PeFAD outperforms existing state-of-the-art baselines by up to 28.74%.
arXiv Detail & Related papers (2024-06-04T13:51:08Z) - Accelerating Inference of Retrieval-Augmented Generation via Sparse Context Selection [28.15184715270483]
Large language models (LLMs) augmented with retrieval exhibit robust performance and extensive versatility.
We propose a novel paradigm named Sparse RAG, which seeks to cut costs through sparsity.
Sparse RAG encodes retrieved documents in parallel, which eliminates latency introduced by long-range attention of retrieved documents.
arXiv Detail & Related papers (2024-05-25T11:10:04Z) - Efficient Heterogeneous Large Language Model Decoding with Model-Attention Disaggregation [15.35494431928751]
Transformer-based large language models (LLMs) exhibit impressive performance in generative tasks but also introduce significant challenges in real-world serving.<n>We introduce model-attention disaggregation to enhance the efficiency of LLM decoding.<n>We develop and deploy Lamina, an LLM inference system that incorporates model-attention disaggregation in a distributed heterogeneous cluster.
arXiv Detail & Related papers (2024-05-03T02:15:15Z) - Cloud-Device Collaborative Learning for Multimodal Large Language Models [24.65882336700547]
We introduce a Cloud-Device Collaborative Continual Adaptation framework to enhance the performance of compressed, device-deployed MLLMs.
Our framework is structured into three key components: a device-to-cloud uplink for efficient data transmission, cloud-based knowledge adaptation, and an optimized cloud-to-device downlink for model deployment.
arXiv Detail & Related papers (2023-12-26T18:46:14Z) - Energy-efficient Task Adaptation for NLP Edge Inference Leveraging
Heterogeneous Memory Architectures [68.91874045918112]
adapter-ALBERT is an efficient model optimization for maximal data reuse across different tasks.
We demonstrate the advantage of mapping the model to a heterogeneous on-chip memory architecture by performing simulations on a validated NLP edge accelerator.
arXiv Detail & Related papers (2023-03-25T14:40:59Z) - DUET: A Tuning-Free Device-Cloud Collaborative Parameters Generation Framework for Efficient Device Model Generalization [66.27399823422665]
Device Model Generalization (DMG) is a practical yet under-investigated research topic for on-device machine learning applications.<n>We propose an efficient Device-cloUd collaborative parametErs generaTion framework DUET.
arXiv Detail & Related papers (2022-09-12T13:26:26Z) - DRAGON: Decentralized Fault Tolerance in Edge Federations [13.864161788250856]
We propose a novel memory-efficient deep learning based model, namely generative optimization networks (GON)
GONs use a single network to both discriminate input and generate samples, significantly reducing their memory footprint.
We propose a decentralized fault-tolerance method called DRAGON that runs simulations to quickly predict and optimize the performance of the edge federation.
arXiv Detail & Related papers (2022-08-16T10:40:28Z) - Asynchronous Parallel Incremental Block-Coordinate Descent for
Decentralized Machine Learning [55.198301429316125]
Machine learning (ML) is a key technique for big-data-driven modelling and analysis of massive Internet of Things (IoT) based intelligent and ubiquitous computing.
For fast-increasing applications and data amounts, distributed learning is a promising emerging paradigm since it is often impractical or inefficient to share/aggregate data.
This paper studies the problem of training an ML model over decentralized systems, where data are distributed over many user devices.
arXiv Detail & Related papers (2022-02-07T15:04:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.