Accurate Machine Learning Interatomic Potentials for Polyacene Molecular Crystals: Application to Single Molecule Host-Guest Systems
- URL: http://arxiv.org/abs/2504.11224v1
- Date: Tue, 15 Apr 2025 14:27:21 GMT
- Title: Accurate Machine Learning Interatomic Potentials for Polyacene Molecular Crystals: Application to Single Molecule Host-Guest Systems
- Authors: Burak Gurlek, Shubham Sharma, Paolo Lazzaroni, Angel Rubio, Mariana Rossi,
- Abstract summary: New machine learning interatomic potentials (MLIPs) offer a promising solution for large-scale accurate material simulations.<n>We develop a general MLIP by leveraging the graph neural network-based MACE architecture and active-learning strategies.<n>We show that these potentials are accurate and enable the study of anharmonic vibrational features, vibrational lifetimes, and vibrational coupling.
- Score: 0.8360937057775453
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Emerging machine learning interatomic potentials (MLIPs) offer a promising solution for large-scale accurate material simulations, but stringent tests related to the description of vibrational dynamics in molecular crystals remain scarce. Here, we develop a general MLIP by leveraging the graph neural network-based MACE architecture and active-learning strategies to accurately capture vibrational dynamics across a range of polyacene-based molecular crystals, namely naphthalene, anthracene, tetracene and pentacene. Through careful error propagation, we show that these potentials are accurate and enable the study of anharmonic vibrational features, vibrational lifetimes, and vibrational coupling. In particular, we investigate large-scale host-guest systems based on these molecular crystals, showing the capacity of molecular-dynamics-based techniques to explain and quantify vibrational coupling between host and guest nuclear motion. Our results establish a framework for understanding vibrational signatures in large-scale complex molecular systems and thus represent an important step for engineering vibrational interactions in molecular environments.
Related papers
- Optical lattice quantum simulator of dynamics beyond Born-Oppenheimer [45.29832252085144]
We propose a platform based on ultra-cold fermionic molecules trapped in optical lattices to simulate nonadiabatic effects.<n>We benchmark our proposal by studying the scattering of an electron or a proton against a hydrogen atom.
arXiv Detail & Related papers (2025-03-30T14:46:26Z) - Unveiling the Dance of Molecules: Ro-Vibrational Dynamics of Molecules under Intense Illumination at Complex Plasmonic Interfaces [0.0]
The study investigates relaxation dynamics of an ensemble of molecules following intense resonant pump excitation in Fabry-Perot cavities and at three-dimensional plasmonic metasurfaces.<n>The simulations reveal dramatically modified relaxation pathways inside cavities compared to free space, characterized by persistent molecular alignment.<n>They also indicate the presence of a previously unreported relaxation stabilization mechanism driven by dephasing of the collective molecular-cavity mode.
arXiv Detail & Related papers (2024-12-03T22:17:35Z) - Quantum control of ro-vibrational dynamics and application to
light-induced molecular chirality [39.58317527488534]
Achiral molecules can be made temporarily chiral by excitation with electric fields.
We go beyond the assumption of molecular orientations to remain fixed during the excitation process.
arXiv Detail & Related papers (2023-10-17T20:33:25Z) - Ab-Initio Vibro-Polaritonic Spectra in Strongly Coupled Cavity-Molecule
Systems [0.0]
We present an ab-initio methodology, based on the cavity Born-Oppenheimer Hartree-Fock ansatz, to calculate vibro-polaritonic IR spectra.
Our semi-classical approach, validated against full quantum simulations, reproduces key features of the vibro-polaritonic spectra.
arXiv Detail & Related papers (2023-10-03T08:16:21Z) - Robust Hamiltonian Engineering for Interacting Qudit Systems [50.591267188664666]
We develop a formalism for the robust dynamical decoupling and Hamiltonian engineering of strongly interacting qudit systems.
We experimentally demonstrate these techniques in a strongly-interacting, disordered ensemble of spin-1 nitrogen-vacancy centers.
arXiv Detail & Related papers (2023-05-16T19:12:41Z) - ViSNet: an equivariant geometry-enhanced graph neural network with
vector-scalar interactive message passing for molecules [69.05950120497221]
We propose an equivariant geometry-enhanced graph neural network called ViSNet, which elegantly extracts geometric features and efficiently models molecular structures.
Our proposed ViSNet outperforms state-of-the-art approaches on multiple MD benchmarks, including MD17, revised MD17 and MD22, and achieves excellent chemical property prediction on QM9 and Molecule3D datasets.
arXiv Detail & Related papers (2022-10-29T07:12:46Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
Molecular dynamics (MD) simulations allow atomistic insights into chemical and biological processes.
Recently, machine learned force fields (MLFFs) emerged as an alternative means to execute MD simulations.
This work proposes a general approach to constructing accurate MLFFs for large-scale molecular simulations.
arXiv Detail & Related papers (2022-05-17T13:08:28Z) - Super-resolution in Molecular Dynamics Trajectory Reconstruction with
Bi-Directional Neural Networks [0.0]
We explore different machine learning (ML) methodologies to increase the resolution of molecular dynamics trajectories on-demand within a post-processing step.
We have found that Bi-LSTMs are the best performing models; by utilizing the local time-symmetry of thermostated trajectories they can even learn long-range correlations and display high robustness to noisy dynamics across molecular complexity.
arXiv Detail & Related papers (2022-01-02T23:00:30Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Molecular spin qudits for quantum simulation of light-matter
interactions [62.223544431366896]
We show that molecular spin qudits provide an ideal platform to simulate the quantum dynamics of photon fields strongly interacting with matter.
The basic unit of the proposed molecular quantum simulator can be realized by a simple dimer of a spin 1/2 and a spin $S$ transition metal ion, solely controlled by microwave pulses.
arXiv Detail & Related papers (2021-03-17T15:03:12Z) - Analog quantum simulation of chemical dynamics [0.0]
We show that analog quantum simulators can efficiently simulate molecular dynamics using bosonic modes to represent vibrations.
Our approach can be implemented in any device with a qudit controllably coupled to bosonic oscillators.
We expect our method will enable classically intractable chemical dynamics simulations in the near term.
arXiv Detail & Related papers (2020-12-03T11:52:38Z) - Molecule-photon interactions in phononic environments [0.0879626117219674]
Liquid quantum optical systems can interface photons, electronic degrees of freedom, localized mechanical vibrations and phonons.
In particular, the strong vibronic interaction between electrons and nuclear motion in a molecule resembles the optomechanical radiation pressure Hamiltonian.
We take here an open quantum system approach to the non-equilibrium dynamics of molecules embedded in a crystal.
arXiv Detail & Related papers (2019-12-05T15:11:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.