Next-Future: Sample-Efficient Policy Learning for Robotic-Arm Tasks
- URL: http://arxiv.org/abs/2504.11247v1
- Date: Tue, 15 Apr 2025 14:45:51 GMT
- Title: Next-Future: Sample-Efficient Policy Learning for Robotic-Arm Tasks
- Authors: Fikrican Özgür, René Zurbrügg, Suryansh Kumar,
- Abstract summary: We introduce a novel replay strategy, "Next-Future", which focuses on rewarding single-step transitions.<n>This approach significantly enhances sample efficiency and accuracy in learning multi-goal Markov decision processes.
- Score: 6.991281327290525
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hindsight Experience Replay (HER) is widely regarded as the state-of-the-art algorithm for achieving sample-efficient multi-goal reinforcement learning (RL) in robotic manipulation tasks with binary rewards. HER facilitates learning from failed attempts by replaying trajectories with redefined goals. However, it relies on a heuristic-based replay method that lacks a principled framework. To address this limitation, we introduce a novel replay strategy, "Next-Future", which focuses on rewarding single-step transitions. This approach significantly enhances sample efficiency and accuracy in learning multi-goal Markov decision processes (MDPs), particularly under stringent accuracy requirements -- a critical aspect for performing complex and precise robotic-arm tasks. We demonstrate the efficacy of our method by highlighting how single-step learning enables improved value approximation within the multi-goal RL framework. The performance of the proposed replay strategy is evaluated across eight challenging robotic manipulation tasks, using ten random seeds for training. Our results indicate substantial improvements in sample efficiency for seven out of eight tasks and higher success rates in six tasks. Furthermore, real-world experiments validate the practical feasibility of the learned policies, demonstrating the potential of "Next-Future" in solving complex robotic-arm tasks.
Related papers
- Coarse-to-fine Q-Network with Action Sequence for Data-Efficient Robot Learning [62.3886343725955]
We introduce Coarse-to-fine Q-Network with Action Sequence (CQN-AS), a novel value-based reinforcement learning algorithm.<n>We study our algorithm on 53 robotic tasks with sparse and dense rewards, as well as with and without demonstrations.
arXiv Detail & Related papers (2024-11-19T01:23:52Z) - Affordance-Guided Reinforcement Learning via Visual Prompting [51.361977466993345]
Keypoint-based Affordance Guidance for Improvements (KAGI) is a method leveraging rewards shaped by vision-language models (VLMs) for autonomous RL.<n>On real-world manipulation tasks specified by natural language descriptions, KAGI improves the sample efficiency of autonomous RL and enables successful task completion in 30K online fine-tuning steps.
arXiv Detail & Related papers (2024-07-14T21:41:29Z) - SERL: A Software Suite for Sample-Efficient Robotic Reinforcement Learning [82.46975428739329]
We develop a library containing a sample efficient off-policy deep RL method, together with methods for computing rewards and resetting the environment.<n>We find that our implementation can achieve very efficient learning, acquiring policies for PCB board assembly, cable routing, and object relocation.<n>These policies achieve perfect or near-perfect success rates, extreme robustness even under perturbations, and exhibit emergent robustness recovery and correction behaviors.
arXiv Detail & Related papers (2024-01-29T10:01:10Z) - Enhancing Robotic Navigation: An Evaluation of Single and
Multi-Objective Reinforcement Learning Strategies [0.9208007322096532]
This study presents a comparative analysis between single-objective and multi-objective reinforcement learning methods for training a robot to navigate effectively to an end goal.
By modifying the reward function to return a vector of rewards, each pertaining to a distinct objective, the robot learns a policy that effectively balances the different goals.
arXiv Detail & Related papers (2023-12-13T08:00:26Z) - Robot Fine-Tuning Made Easy: Pre-Training Rewards and Policies for
Autonomous Real-World Reinforcement Learning [58.3994826169858]
We introduce RoboFuME, a reset-free fine-tuning system for robotic reinforcement learning.
Our insights are to utilize offline reinforcement learning techniques to ensure efficient online fine-tuning of a pre-trained policy.
Our method can incorporate data from an existing robot dataset and improve on a target task within as little as 3 hours of autonomous real-world experience.
arXiv Detail & Related papers (2023-10-23T17:50:08Z) - REBOOT: Reuse Data for Bootstrapping Efficient Real-World Dexterous
Manipulation [61.7171775202833]
We introduce an efficient system for learning dexterous manipulation skills withReinforcement learning.
The main idea of our approach is the integration of recent advances in sample-efficient RL and replay buffer bootstrapping.
Our system completes the real-world training cycle by incorporating learned resets via an imitation-based pickup policy.
arXiv Detail & Related papers (2023-09-06T19:05:31Z) - Exploiting Symmetry and Heuristic Demonstrations in Off-policy
Reinforcement Learning for Robotic Manipulation [1.7901837062462316]
This paper aims to define and incorporate the natural symmetry present in physical robotic environments.
The proposed method is validated via two point-to-point reaching tasks of an industrial arm, with and without an obstacle.
A comparison study between the proposed method and a traditional off-policy reinforcement learning algorithm indicates its advantage in learning performance and potential value for applications.
arXiv Detail & Related papers (2023-04-12T11:38:01Z) - Leveraging Sequentiality in Reinforcement Learning from a Single
Demonstration [68.94506047556412]
We propose to leverage a sequential bias to learn control policies for complex robotic tasks using a single demonstration.
We show that DCIL-II can solve with unprecedented sample efficiency some challenging simulated tasks such as humanoid locomotion and stand-up.
arXiv Detail & Related papers (2022-11-09T10:28:40Z) - Automatic Goal Generation using Dynamical Distance Learning [5.797847756967884]
Reinforcement Learning (RL) agents can learn to solve complex sequential decision making tasks by interacting with the environment.
In the field of multi-goal RL, where agents are required to reach multiple goals to solve complex tasks, improving sample efficiency can be especially challenging.
We propose a method for automatic goal generation using a dynamical distance function (DDF) in a self-supervised fashion.
arXiv Detail & Related papers (2021-11-07T16:23:56Z) - Value-Based Reinforcement Learning for Continuous Control Robotic
Manipulation in Multi-Task Sparse Reward Settings [15.198729819644795]
We show the potential of value-based reinforcement learning for learning continuous robotic manipulation tasks in sparse reward settings.
On robotic manipulation tasks, we empirically show RBF-DQN converges faster than current state of the art algorithms such as TD3, SAC, and PPO.
We also perform ablation studies with RBF-DQN and have shown that some enhancement techniques for vanilla Deep Q learning such as Hindsight Experience Replay (HER) and Prioritized Experience Replay (PER) can also be applied to RBF-DQN.
arXiv Detail & Related papers (2021-07-28T13:40:08Z) - Reinforcement Learning Experiments and Benchmark for Solving Robotic
Reaching Tasks [0.0]
Reinforcement learning has been successfully applied to solving the reaching task with robotic arms.
It is shown that augmenting the reward signal with the Hindsight Experience Replay exploration technique increases the average return of off-policy agents.
arXiv Detail & Related papers (2020-11-11T14:00:49Z) - Scalable Multi-Task Imitation Learning with Autonomous Improvement [159.9406205002599]
We build an imitation learning system that can continuously improve through autonomous data collection.
We leverage the robot's own trials as demonstrations for tasks other than the one that the robot actually attempted.
In contrast to prior imitation learning approaches, our method can autonomously collect data with sparse supervision for continuous improvement.
arXiv Detail & Related papers (2020-02-25T18:56:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.