Reinforcement Learning Experiments and Benchmark for Solving Robotic
Reaching Tasks
- URL: http://arxiv.org/abs/2011.05782v1
- Date: Wed, 11 Nov 2020 14:00:49 GMT
- Title: Reinforcement Learning Experiments and Benchmark for Solving Robotic
Reaching Tasks
- Authors: Pierre Aumjaud, David McAuliffe, Francisco Javier Rodr\'iguez Lera,
Philip Cardiff
- Abstract summary: Reinforcement learning has been successfully applied to solving the reaching task with robotic arms.
It is shown that augmenting the reward signal with the Hindsight Experience Replay exploration technique increases the average return of off-policy agents.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reinforcement learning has shown great promise in robotics thanks to its
ability to develop efficient robotic control procedures through self-training.
In particular, reinforcement learning has been successfully applied to solving
the reaching task with robotic arms. In this paper, we define a robust,
reproducible and systematic experimental procedure to compare the performance
of various model-free algorithms at solving this task. The policies are trained
in simulation and are then transferred to a physical robotic manipulator. It is
shown that augmenting the reward signal with the Hindsight Experience Replay
exploration technique increases the average return of off-policy agents between
7 and 9 folds when the target position is initialised randomly at the beginning
of each episode.
Related papers
- Unsupervised Learning of Effective Actions in Robotics [0.9374652839580183]
Current state-of-the-art action representations in robotics lack proper effect-driven learning of the robot's actions.
We propose an unsupervised algorithm to discretize a continuous motion space and generate "action prototypes"
We evaluate our method on a simulated stair-climbing reinforcement learning task.
arXiv Detail & Related papers (2024-04-03T13:28:52Z) - Robot Fine-Tuning Made Easy: Pre-Training Rewards and Policies for
Autonomous Real-World Reinforcement Learning [58.3994826169858]
We introduce RoboFuME, a reset-free fine-tuning system for robotic reinforcement learning.
Our insights are to utilize offline reinforcement learning techniques to ensure efficient online fine-tuning of a pre-trained policy.
Our method can incorporate data from an existing robot dataset and improve on a target task within as little as 3 hours of autonomous real-world experience.
arXiv Detail & Related papers (2023-10-23T17:50:08Z) - Self-Improving Robots: End-to-End Autonomous Visuomotor Reinforcement
Learning [54.636562516974884]
In imitation and reinforcement learning, the cost of human supervision limits the amount of data that robots can be trained on.
In this work, we propose MEDAL++, a novel design for self-improving robotic systems.
The robot autonomously practices the task by learning to both do and undo the task, simultaneously inferring the reward function from the demonstrations.
arXiv Detail & Related papers (2023-03-02T18:51:38Z) - Robot Learning on the Job: Human-in-the-Loop Autonomy and Learning
During Deployment [25.186525630548356]
Sirius is a principled framework for humans and robots to collaborate through a division of work.
Partially autonomous robots are tasked with handling a major portion of decision-making where they work reliably.
We introduce a new learning algorithm to improve the policy's performance on the data collected from the task executions.
arXiv Detail & Related papers (2022-11-15T18:53:39Z) - Leveraging Sequentiality in Reinforcement Learning from a Single
Demonstration [68.94506047556412]
We propose to leverage a sequential bias to learn control policies for complex robotic tasks using a single demonstration.
We show that DCIL-II can solve with unprecedented sample efficiency some challenging simulated tasks such as humanoid locomotion and stand-up.
arXiv Detail & Related papers (2022-11-09T10:28:40Z) - Active Exploration for Robotic Manipulation [40.39182660794481]
This paper proposes a model-based active exploration approach that enables efficient learning in sparse-reward robotic manipulation tasks.
We evaluate our proposed algorithm in simulation and on a real robot, trained from scratch with our method.
arXiv Detail & Related papers (2022-10-23T18:07:51Z) - Learning to Fold Real Garments with One Arm: A Case Study in Cloud-Based
Robotics Research [21.200764836237497]
We present the first systematic benchmarking of fabric manipulation algorithms on physical hardware.
We develop 4 novel learning-based algorithms that model expert actions, keypoints, reward functions, and dynamic motions.
The entire lifecycle of data collection, model training, and policy evaluation is performed remotely without physical access to the robot workcell.
arXiv Detail & Related papers (2022-04-21T17:31:20Z) - Revisiting the Adversarial Robustness-Accuracy Tradeoff in Robot
Learning [121.9708998627352]
Recent work has shown that, in practical robot learning applications, the effects of adversarial training do not pose a fair trade-off.
This work revisits the robustness-accuracy trade-off in robot learning by analyzing if recent advances in robust training methods and theory can make adversarial training suitable for real-world robot applications.
arXiv Detail & Related papers (2022-04-15T08:12:15Z) - Lifelong Robotic Reinforcement Learning by Retaining Experiences [61.79346922421323]
Many multi-task reinforcement learning efforts assume the robot can collect data from all tasks at all times.
In this work, we study a practical sequential multi-task RL problem motivated by the practical constraints of physical robotic systems.
We derive an approach that effectively leverages the data and policies learned for previous tasks to cumulatively grow the robot's skill-set.
arXiv Detail & Related papers (2021-09-19T18:00:51Z) - Scalable Multi-Task Imitation Learning with Autonomous Improvement [159.9406205002599]
We build an imitation learning system that can continuously improve through autonomous data collection.
We leverage the robot's own trials as demonstrations for tasks other than the one that the robot actually attempted.
In contrast to prior imitation learning approaches, our method can autonomously collect data with sparse supervision for continuous improvement.
arXiv Detail & Related papers (2020-02-25T18:56:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.