A Rollout-Based Algorithm and Reward Function for Efficient Resource Allocation in Business Processes
- URL: http://arxiv.org/abs/2504.11250v1
- Date: Tue, 15 Apr 2025 14:46:58 GMT
- Title: A Rollout-Based Algorithm and Reward Function for Efficient Resource Allocation in Business Processes
- Authors: Jeroen Middelhuis, Zaharah Bukhsh, Ivo Adan, Remco Dijkman,
- Abstract summary: We propose a rollout-based DRL algorithm and a reward function to optimize the objective directly.<n>Our algorithm iteratively improves the policy by evaluating execution trajectories following different actions.<n>Our reward function directly decomposes the objective function of minimizing the mean cycle time.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Resource allocation plays a critical role in minimizing cycle time and improving the efficiency of business processes. Recently, Deep Reinforcement Learning (DRL) has emerged as a powerful tool to optimize resource allocation policies in business processes. In the DRL framework, an agent learns a policy through interaction with the environment, guided solely by reward signals that indicate the quality of its decisions. However, existing algorithms are not suitable for dynamic environments such as business processes. Furthermore, existing DRL-based methods rely on engineered reward functions that approximate the desired objective, but a misalignment between reward and objective can lead to undesired decisions or suboptimal policies. To address these issues, we propose a rollout-based DRL algorithm and a reward function to optimize the objective directly. Our algorithm iteratively improves the policy by evaluating execution trajectories following different actions. Our reward function directly decomposes the objective function of minimizing the mean cycle time. Maximizing our reward function guarantees that the objective function is minimized without requiring extensive reward engineering. The results show that our method consistently learns the optimal policy in all six evaluated business processes, outperforming the state-of-the-art algorithm that can only learn the optimal policy in two of the evaluated processes.
Related papers
- Fast Adaptation with Behavioral Foundation Models [82.34700481726951]
Unsupervised zero-shot reinforcement learning has emerged as a powerful paradigm for pretraining behavioral foundation models.<n>Despite promising results, zero-shot policies are often suboptimal due to errors induced by the unsupervised training process.<n>We propose fast adaptation strategies that search in the low-dimensional task-embedding space of the pre-trained BFM to rapidly improve the performance of its zero-shot policies.
arXiv Detail & Related papers (2025-04-10T16:14:17Z) - Analyzing and Bridging the Gap between Maximizing Total Reward and Discounted Reward in Deep Reinforcement Learning [17.245293915129942]
The optimal objective is a fundamental aspect of reinforcement learning (RL)
While total return is ideal, discounted return is practical objective due to its stability.
We propose two alternative approaches to align the objectives.
arXiv Detail & Related papers (2024-07-18T08:33:10Z) - Natural Policy Gradient and Actor Critic Methods for Constrained Multi-Task Reinforcement Learning [13.908826484332282]
Multi-task reinforcement learning (RL) aims to find a single policy that effectively solves multiple tasks at the same time.
This paper presents a constrained formulation for multi-task RL where the goal is to maximize the average performance of the policy across tasks subject to bounds on the performance in each task.
arXiv Detail & Related papers (2024-05-03T19:43:30Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
Reinforcement learning (RL) has become the de facto standard practice for sequential decision-making problems by improving future acting policies with feedback.
Recent developments in large language models (LLMs) have showcased impressive capabilities in language understanding and generation, yet they fall short in exploration and self-improvement capabilities.
We develop an algorithm named LINVIT that incorporates LLM guidance as a regularization factor in value-based RL, leading to significant reductions in the amount of data needed for learning.
arXiv Detail & Related papers (2024-02-25T20:07:13Z) - Towards Efficient Exact Optimization of Language Model Alignment [93.39181634597877]
Direct preference optimization (DPO) was proposed to directly optimize the policy from preference data.
We show that DPO derived based on the optimal solution of problem leads to a compromised mean-seeking approximation of the optimal solution in practice.
We propose efficient exact optimization (EXO) of the alignment objective.
arXiv Detail & Related papers (2024-02-01T18:51:54Z) - Sample Efficient Reinforcement Learning by Automatically Learning to
Compose Subtasks [3.1594865504808944]
We propose an RL algorithm that automatically structure the reward function for sample efficiency, given a set of labels that signify subtasks.
We evaluate our algorithm in a variety of sparse-reward environments.
arXiv Detail & Related papers (2024-01-25T15:06:40Z) - REBEL: Reward Regularization-Based Approach for Robotic Reinforcement Learning from Human Feedback [61.54791065013767]
A misalignment between the reward function and human preferences can lead to catastrophic outcomes in the real world.<n>Recent methods aim to mitigate misalignment by learning reward functions from human preferences.<n>We propose a novel concept of reward regularization within the robotic RLHF framework.
arXiv Detail & Related papers (2023-12-22T04:56:37Z) - Reparameterized Policy Learning for Multimodal Trajectory Optimization [61.13228961771765]
We investigate the challenge of parametrizing policies for reinforcement learning in high-dimensional continuous action spaces.
We propose a principled framework that models the continuous RL policy as a generative model of optimal trajectories.
We present a practical model-based RL method, which leverages the multimodal policy parameterization and learned world model.
arXiv Detail & Related papers (2023-07-20T09:05:46Z) - Learning policies for resource allocation in business processes [0.0]
This paper proposes two learning-based methods for resource allocation in business processes.
The first method leverages Deep Reinforcement Learning (DRL) to learn policies by allocating resources to activities.
The second method is a score-based value function approximation approach, which learns the weights of a set of curated features to prioritize resource assignments.
arXiv Detail & Related papers (2023-04-19T21:05:38Z) - CACTO: Continuous Actor-Critic with Trajectory Optimization -- Towards
global optimality [5.0915256711576475]
This paper presents a novel algorithm for the continuous control of dynamical systems that combines Trayy (TO) and Reinforcement Learning (RL) in a single trajectory.
arXiv Detail & Related papers (2022-11-12T10:16:35Z) - Maximum-Likelihood Inverse Reinforcement Learning with Finite-Time
Guarantees [56.848265937921354]
Inverse reinforcement learning (IRL) aims to recover the reward function and the associated optimal policy.
Many algorithms for IRL have an inherently nested structure.
We develop a novel single-loop algorithm for IRL that does not compromise reward estimation accuracy.
arXiv Detail & Related papers (2022-10-04T17:13:45Z) - Implementation Matters in Deep Policy Gradients: A Case Study on PPO and
TRPO [90.90009491366273]
We study the roots of algorithmic progress in deep policy gradient algorithms through a case study on two popular algorithms.
Specifically, we investigate the consequences of "code-level optimizations:"
Our results show that they (a) are responsible for most of PPO's gain in cumulative reward over TRPO, and (b) fundamentally change how RL methods function.
arXiv Detail & Related papers (2020-05-25T16:24:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.