論文の概要: Distillation-Supervised Convolutional Low-Rank Adaptation for Efficient Image Super-Resolution
- arxiv url: http://arxiv.org/abs/2504.11271v1
- Date: Tue, 15 Apr 2025 15:12:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-16 22:09:40.562335
- Title: Distillation-Supervised Convolutional Low-Rank Adaptation for Efficient Image Super-Resolution
- Title(参考訳): 効率的な画像超解像のための蒸留監督型畳み込み低ランク適応
- Authors: Xinning Chai, Yao Zhang, Yuxuan Zhang, Zhengxue Cheng, Yingsheng Qin, Yucai Yang, Li Song,
- Abstract要約: 畳み込みニューラルネットワーク(CNN)は画像の高解像度化に広く利用されている。
本稿では,DSCLoRA(Distillation-Supervised Convolutional Low-Rank Adaptation)を提案する。
- 参考スコア(独自算出の注目度): 19.22142805041799
- License:
- Abstract: Convolutional neural networks (CNNs) have been widely used in efficient image super-resolution. However, for CNN-based methods, performance gains often require deeper networks and larger feature maps, which increase complexity and inference costs. Inspired by LoRA's success in fine-tuning large language models, we explore its application to lightweight models and propose Distillation-Supervised Convolutional Low-Rank Adaptation (DSCLoRA), which improves model performance without increasing architectural complexity or inference costs. Specifically, we integrate ConvLoRA into the efficient SR network SPAN by replacing the SPAB module with the proposed SConvLB module and incorporating ConvLoRA layers into both the pixel shuffle block and its preceding convolutional layer. DSCLoRA leverages low-rank decomposition for parameter updates and employs a spatial feature affinity-based knowledge distillation strategy to transfer second-order statistical information from teacher models (pre-trained SPAN) to student models (ours). This method preserves the core knowledge of lightweight models and facilitates optimal solution discovery under certain conditions. Experiments on benchmark datasets show that DSCLoRA improves PSNR and SSIM over SPAN while maintaining its efficiency and competitive image quality. Notably, DSCLoRA ranked first in the Overall Performance Track of the NTIRE 2025 Efficient Super-Resolution Challenge. Our code and models are made publicly available at https://github.com/Yaozzz666/DSCF-SR.
- Abstract(参考訳): 畳み込みニューラルネットワーク(CNN)は画像の高解像度化に広く利用されている。
しかし、CNNベースの手法では、より深いネットワークとより大きな機能マップを必要とすることが多く、複雑さと推論コストが増大する。
LoRAの微調整大言語モデルの成功に触発されて、軽量モデルへの応用を探求し、アーキテクチャの複雑さや推論コストを増大させることなくモデル性能を向上させるDistillation-Supervised Convolutional Low-Rank Adaptation (DSCLoRA)を提案する。
具体的には、SPABモジュールをSConvLBモジュールに置き換え、ConvLoRA層をピクセルシャッフルブロックとそれ以前の畳み込み層の両方に組み込むことで、効率的なSRネットワークSPANにConvLoRAを統合する。
DSCLoRAは、パラメータ更新に低ランク分解を活用し、空間的特徴親和性に基づく知識蒸留戦略を用いて、教師モデル(事前学習SPAN)から生徒モデル(ours)に2階統計情報を転送する。
本手法は,軽量モデルのコア知識を保存し,特定の条件下での最適解発見を容易にする。
ベンチマークデータセットの実験では、DSCLoRAはPSNRとSSIMをSPANよりも改善し、効率と競争力のある画像品質を維持している。
特に、DSCLoRAは NTIRE 2025 Efficient Super-Resolution Challenge の総合成績トラックで1位にランクインした。
私たちのコードとモデルはhttps://github.com/Yaozzz666/DSCF-SRで公開されています。
関連論文リスト
- VELoRA: A Low-Rank Adaptation Approach for Efficient RGB-Event based Recognition [54.27379947727035]
本稿では,RGBイベントに基づく分類のために,事前学習した基盤視覚モデルに適応するための新しいPEFT戦略を提案する。
また、2重モードのフレーム差は、フレーム差バックボーンネットワークを介してモーションキューをキャプチャすると考えられている。
ソースコードと事前トレーニングされたモデルはurlhttps://github.com/Event-AHU/VELoRAでリリースされる。
論文 参考訳(メタデータ) (2024-12-28T07:38:23Z) - Binarized Diffusion Model for Image Super-Resolution [61.963833405167875]
超圧縮アルゴリズムであるバイナリ化は、高度な拡散モデル(DM)を効果的に加速する可能性を提供する
既存の二項化法では性能が著しく低下する。
画像SRのための新しいバイナライズ拡散モデルBI-DiffSRを提案する。
論文 参考訳(メタデータ) (2024-06-09T10:30:25Z) - A-SDM: Accelerating Stable Diffusion through Redundancy Removal and
Performance Optimization [54.113083217869516]
本研究ではまず,ネットワークの計算冗長性について検討する。
次に、モデルの冗長性ブロックをプルークし、ネットワーク性能を維持する。
第3に,計算集約型注意部を高速化するグローバル地域対話型注意(GRI)を提案する。
論文 参考訳(メタデータ) (2023-12-24T15:37:47Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
画像超解像(SR)は、CNNからトランスフォーマーアーキテクチャへの広範なニューラルネットワーク設計を目撃している。
本研究は,市販のネットワーク設計を生かし,基礎となる計算オーバーヘッドを低減するため,超高解像度イテレーションにおけるネットワークプルーニングの可能性について検討する。
本研究では, ランダムネットワークのスパース構造を最適化し, 重要でない重みを小さめに微調整することにより, 反復型軟収縮率(ISS-P)法を提案する。
論文 参考訳(メタデータ) (2023-03-16T21:06:13Z) - STN: Scalable Tensorizing Networks via Structure-Aware Training and
Adaptive Compression [10.067082377396586]
本稿では,モデルサイズと分解構造を適応的に調整するスケーラビリティネットワーク(STN)を提案する。
STNは任意のネットワークアーキテクチャと互換性があり、他のテンソル化バージョンよりも高い圧縮性能と柔軟性を実現する。
論文 参考訳(メタデータ) (2022-05-30T15:50:48Z) - Residual Local Feature Network for Efficient Super-Resolution [20.62809970985125]
本研究では,Residual Local Feature Network (RLFN)を提案する。
主なアイデアは、3つの畳み込みレイヤを局所的な特徴学習に使用して、機能の集約を単純化することだ。
さらに,NTIRE 2022の高効率超解像問題において,第1位を獲得した。
論文 参考訳(メタデータ) (2022-05-16T08:46:34Z) - MPRNet: Multi-Path Residual Network for Lightweight Image Super
Resolution [2.3576437999036473]
軽量SRにおけるSOTA性能を向上させる軽量超解像ネットワークを提案する。
提案アーキテクチャには新たなアテンション機構であるTwo-Fold Attention Moduleが含まれており,モデルの表現能力を最大化することができる。
論文 参考訳(メタデータ) (2020-11-09T17:11:15Z) - Accurate and Lightweight Image Super-Resolution with Model-Guided Deep
Unfolding Network [63.69237156340457]
我々は、モデル誘導深部展開ネットワーク(MoG-DUN)と呼ばれるSISRに対する説明可能なアプローチを提示し、提唱する。
MoG-DUNは正確(エイリアスを少なくする)、計算効率(モデルパラメータを減らした)、多用途(多重劣化を処理できる)である。
RCAN, SRDNF, SRFBNを含む既存の最先端画像手法に対するMoG-DUN手法の優位性は、いくつかの一般的なデータセットと様々な劣化シナリオに関する広範な実験によって実証されている。
論文 参考訳(メタデータ) (2020-09-14T08:23:37Z) - Iterative Network for Image Super-Resolution [69.07361550998318]
単一画像超解像(SISR)は、最近の畳み込みニューラルネットワーク(CNN)の発展により、大幅に活性化されている。
本稿では、従来のSISRアルゴリズムに関する新たな知見を提供し、反復最適化に依存するアプローチを提案する。
反復最適化の上に,新しい反復型超解像ネットワーク (ISRN) を提案する。
論文 参考訳(メタデータ) (2020-05-20T11:11:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。