論文の概要: From Misleading Queries to Accurate Answers: A Three-Stage Fine-Tuning Method for LLMs
- arxiv url: http://arxiv.org/abs/2504.11277v1
- Date: Tue, 15 Apr 2025 15:16:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-16 22:10:32.096638
- Title: From Misleading Queries to Accurate Answers: A Three-Stage Fine-Tuning Method for LLMs
- Title(参考訳): 待ち行列から正確な回答へ:LCMの3段階微調整法
- Authors: Guocong Li, Weize Liu, Yihang Wu, Ping Wang, Shuaihan Huang, Hongxia Xu, Jian Wu,
- Abstract要約: 大規模言語モデル(LLM)は自然言語処理(NLP)において優れた性能を示す
既存の方法は出力の修正に重点を置いているが、LLMが入力自体の誤解を招くコンテンツを検出し修正する能力を改善する可能性を見落としていることが多い。
入力中のミスリード情報を検出・修正するLLMの能力を向上する新しい3段階微調整法を提案する。
- 参考スコア(独自算出の注目度): 5.23164145730825
- License:
- Abstract: Large language models (LLMs) exhibit excellent performance in natural language processing (NLP), but remain highly sensitive to the quality of input queries, especially when these queries contain misleading or inaccurate information. Existing methods focus on correcting the output, but they often overlook the potential of improving the ability of LLMs to detect and correct misleading content in the input itself. In this paper, we propose a novel three-stage fine-tuning method that enhances the ability of LLMs to detect and correct misleading information in the input, further improving response accuracy and reducing hallucinations. Specifically, the three stages include (1) training LLMs to identify misleading information, (2) training LLMs to correct the misleading information using built-in or external knowledge, and (3) training LLMs to generate accurate answers based on the corrected queries. To evaluate our method, we conducted experiments on three datasets for the hallucination detection task and the question answering (QA) task, as well as two datasets containing misleading information that we constructed. The experimental results demonstrate that our method significantly improves the accuracy and factuality of LLM responses, while also enhancing the ability to detect hallucinations and reducing the generation of hallucinations in the output, particularly when the query contains misleading information. We will publicly release our code upon acceptance.
- Abstract(参考訳): 大規模言語モデル(LLM)は自然言語処理(NLP)において優れた性能を示すが、入力クエリの品質に非常に敏感である。
既存の方法は出力の修正に重点を置いているが、LLMが入力自体の誤解を招くコンテンツを検出し修正する能力を改善する可能性を見落としていることが多い。
本稿では,LLMが入力中の誤り情報を検出し,訂正する能力を高め,応答精度の向上と幻覚の低減を図る3段階ファインチューニング手法を提案する。
具体的には,(1)誤解を招く情報を特定するためのLLMのトレーニング,(2)組み込まれた情報や外部知識を用いて誤解を招く情報を修正するためのLLMのトレーニング,(3)訂正されたクエリに基づいて正確な回答を生成するためのLLMのトレーニングである。
本手法を評価するために,幻覚検出タスクと質問応答タスクの3つのデータセットと,構築した誤解を招く情報を含む2つのデータセットについて実験を行った。
実験の結果,提案手法はLLM応答の精度と事実性を大幅に向上し,特にクエリに誤解を招く情報が含まれている場合の幻覚の検出や,出力中の幻覚の発生を低減させる能力も向上することが示された。
受け入れ次第、コードを公開します。
関連論文リスト
- Aligning Large Language Models to Follow Instructions and Hallucinate Less via Effective Data Filtering [66.5524727179286]
NOVAは、幻覚を減らすための学習知識とよく一致した高品質なデータを特定するために設計されたフレームワークである。
内部整合性探索(ICP)とセマンティック等価同定(SEI)が含まれており、LLMが命令データとどれだけ親しみやすいかを測定する。
選択したサンプルの品質を確保するため,親しみ以上の特性を考慮した専門家による報酬モデルを導入する。
論文 参考訳(メタデータ) (2025-02-11T08:05:56Z) - Are LLMs Really Not Knowledgable? Mining the Submerged Knowledge in LLMs' Memory [15.986679553468989]
大規模言語モデル(LLM)は潜在的な知識基盤として有望であることを示している。
LLMは質問応答タスクに苦しむことが多く、幻覚を起こす傾向がある。
我々は,検出されたが表現されていない知識を活用することで,解答精度を向上させる手法であるSkipUnsureを開発した。
論文 参考訳(メタデータ) (2024-12-30T10:29:18Z) - Provenance: A Light-weight Fact-checker for Retrieval Augmented LLM Generation Output [49.893971654861424]
検索強化生成(RAG)から非実効出力を検出する軽量な手法を提案する。
私たちは、二項決定を下すためにしきい値にできる事実性スコアを計算します。
実験の結果, ROC曲線 (AUC) の下では, 関連するオープンソースデータセットの広範囲にわたって高い面積を示すことができた。
論文 参考訳(メタデータ) (2024-11-01T20:44:59Z) - LEAF: Learning and Evaluation Augmented by Fact-Checking to Improve Factualness in Large Language Models [11.453585039783901]
LEAF: Fact-Checkingによって強化された学習と評価は、大規模言語モデル(LLM)の現実的信頼性を高めるために設計された新しいアプローチである。
最初の戦略であるFact-Check-Then-RAGは、ファクトチェック結果を取り入れて、モデルパラメータを更新せずに検索プロセスをガイドすることによって、検索精度を向上させる。
第2の戦略であるLearning from Fact-Checks via Self-Trainingは、ファクトチェックされた応答の監督された微調整(SFT)や、ファクトチェックをランキングメカニズムとして適用するSimple Preference Optimization(SimPO)である。
論文 参考訳(メタデータ) (2024-10-31T00:18:05Z) - Enhancing Confidence Expression in Large Language Models Through Learning from Past Experience [41.06726400259579]
大規模言語モデル(LLM)は、様々な下流タスクで顕著なパフォーマンスを示している。
信頼表現能力を高めるために,過去の経験から学習する方法(LePe)を提案する。
論文 参考訳(メタデータ) (2024-04-16T06:47:49Z) - The Earth is Flat? Unveiling Factual Errors in Large Language Models [89.94270049334479]
ChatGPTのような大規模言語モデル(LLM)は、事前学習や微調整の知識が豊富にあるため、様々な応用がある。
それにもかかわらず、医療、ジャーナリズム、教育といった重要な分野に懸念を抱き、事実と常識の誤りを引き起こす傾向にある。
LLMにおける事実不正確な事実を明らかにすることを目的とした,新しい自動テストフレームワークであるFactCheckerを紹介する。
論文 参考訳(メタデータ) (2024-01-01T14:02:27Z) - Enhancing Uncertainty-Based Hallucination Detection with Stronger Focus [99.33091772494751]
大規模言語モデル(LLM)は、様々な分野にわたる印象的なパフォーマンスで大きな人気を集めている。
LLMは、ユーザの期待を満たさない非現実的あるいは非感覚的なアウトプットを幻覚させる傾向がある。
LLMにおける幻覚を検出するための新しい基準のない不確実性に基づく手法を提案する。
論文 参考訳(メタデータ) (2023-11-22T08:39:17Z) - Knowing What LLMs DO NOT Know: A Simple Yet Effective Self-Detection Method [36.24876571343749]
大規模言語モデル(LLM)は自然言語処理(NLP)タスクにおいて大きな可能性を示している。
近年の文献では、LLMは断続的に非実効応答を生成する。
本研究では,LLM が知らない質問が非現実的な結果を生成する傾向にあることを検知する新たな自己検出手法を提案する。
論文 参考訳(メタデータ) (2023-10-27T06:22:14Z) - Reflection-Tuning: Data Recycling Improves LLM Instruction-Tuning [79.32236399694077]
トレーニングセットの低品質データは、通常、チューニングのチューニングに有害である。
我々は「反射チューニング」と呼ばれる新しい手法を提案する。
このアプローチでは、オラクルLSMを使用して、データ内の命令や応答の質を検査し、向上することで、元のトレーニングデータをリサイクルする。
論文 参考訳(メタデータ) (2023-10-18T05:13:47Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
調整された大規模言語モデル(LLM)は、タスク解決、指示に従うこと、安全性を確保することにおいて、例外的な能力を示す。
既存の連続学習ベンチマークでは、LLMをリードする上で十分な課題が欠如している。
LLMにおける継続学習を評価するための新しいベンチマークであるTRACEを紹介する。
論文 参考訳(メタデータ) (2023-10-10T16:38:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。