CFIS-YOLO: A Lightweight Multi-Scale Fusion Network for Edge-Deployable Wood Defect Detection
- URL: http://arxiv.org/abs/2504.11305v1
- Date: Tue, 15 Apr 2025 15:45:59 GMT
- Title: CFIS-YOLO: A Lightweight Multi-Scale Fusion Network for Edge-Deployable Wood Defect Detection
- Authors: Jincheng Kang, Yi Cen, Yigang Cen, Ke Wang, Yuhan Liu,
- Abstract summary: Wood defect detection is critical for ensuring quality control in the wood processing industry.<n>This study proposes CFIS-YOLO, a lightweight object detection model optimized for edge devices.<n>The model introduces an enhanced C2f structure, a dynamic feature recombination module, and a novel loss function that incorporates auxiliary bounding boxes and angular constraints.
- Score: 20.900619657426212
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Wood defect detection is critical for ensuring quality control in the wood processing industry. However, current industrial applications face two major challenges: traditional methods are costly, subjective, and labor-intensive, while mainstream deep learning models often struggle to balance detection accuracy and computational efficiency for edge deployment. To address these issues, this study proposes CFIS-YOLO, a lightweight object detection model optimized for edge devices. The model introduces an enhanced C2f structure, a dynamic feature recombination module, and a novel loss function that incorporates auxiliary bounding boxes and angular constraints. These innovations improve multi-scale feature fusion and small object localization while significantly reducing computational overhead. Evaluated on a public wood defect dataset, CFIS-YOLO achieves a mean Average Precision (mAP@0.5) of 77.5\%, outperforming the baseline YOLOv10s by 4 percentage points. On SOPHON BM1684X edge devices, CFIS-YOLO delivers 135 FPS, reduces power consumption to 17.3\% of the original implementation, and incurs only a 0.5 percentage point drop in mAP. These results demonstrate that CFIS-YOLO is a practical and effective solution for real-world wood defect detection in resource-constrained environments.
Related papers
- MASF-YOLO: An Improved YOLOv11 Network for Small Object Detection on Drone View [0.0]
We propose a novel object detection network Multi-scale Context Aggregation and Scale-adaptive Fusion YOLO (MASF-YOLO)
To tackle the difficulty of detecting small objects in UAV images, we design a Multi-scale Feature Aggregation Module (MFAM), which significantly improves the detection accuracy of small objects.
Thirdly, we introduce a Dimension-Aware Selective Integration Module (DASI), which further enhances multi-scale feature fusion capabilities.
arXiv Detail & Related papers (2025-04-25T07:43:33Z) - A lightweight model FDM-YOLO for small target improvement based on YOLOv8 [0.0]
Small targets are difficult to detect due to their low pixel count, complex backgrounds, and varying shooting angles.<n>This paper focuses on small target detection and explores methods for object detection under low computational constraints.
arXiv Detail & Related papers (2025-03-06T14:06:35Z) - Network Resource Optimization for ML-Based UAV Condition Monitoring with Vibration Analysis [54.550658461477106]
Condition Monitoring (CM) uses Machine Learning (ML) models to identify abnormal and adverse conditions.
This work explores the optimization of network resources for ML-based UAV CM frameworks.
By leveraging dimensionality reduction techniques, there is a 99.9% reduction in network resource consumption.
arXiv Detail & Related papers (2025-02-21T14:36:12Z) - Towards Resource-Efficient Federated Learning in Industrial IoT for Multivariate Time Series Analysis [50.18156030818883]
Anomaly and missing data constitute a thorny problem in industrial applications.
Deep learning enabled anomaly detection has emerged as a critical direction.
The data collected in edge devices contain user privacy.
arXiv Detail & Related papers (2024-11-06T15:38:31Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - DSORT-MCU: Detecting Small Objects in Real-Time on Microcontroller Units [1.4447019135112429]
This paper proposes an adaptive tiling method for lightweight and energy-efficient object detection networks, including YOLO-based models and the popular FOMO network.
The proposed tiling enables object detection on low-power MCUs with no compromise on accuracy compared to large-scale detection models.
arXiv Detail & Related papers (2024-10-22T07:37:47Z) - LeYOLO, New Scalable and Efficient CNN Architecture for Object Detection [0.0]
We focus on design choices of neural network architectures for efficient object detection based on FLOP.
We propose several optimizations to enhance the efficiency of YOLO-based models.
This paper contributes to a new scaling paradigm for object detection and YOLO-centric models called LeYOLO.
arXiv Detail & Related papers (2024-06-20T12:08:24Z) - Sample Less, Learn More: Efficient Action Recognition via Frame Feature
Restoration [59.6021678234829]
We propose a novel method to restore the intermediate features for two sparsely sampled and adjacent video frames.
With the integration of our method, the efficiency of three commonly used baselines has been improved by over 50%, with a mere 0.5% reduction in recognition accuracy.
arXiv Detail & Related papers (2023-07-27T13:52:42Z) - Lightweight wood panel defect detection method incorporating attention
mechanism and feature fusion network [9.775181958901326]
We propose a lightweight wood panel defect detection method called YOLOv5-LW, which incorporates attention mechanisms and a feature fusion network.
The proposed method achieves a 92.8% accuracy rate, reduces the number of parameters by 27.78%, compresses computational volume by 41.25%, improves detection inference speed by 10.16%.
arXiv Detail & Related papers (2023-06-21T08:55:45Z) - EdgeYOLO: An Edge-Real-Time Object Detector [69.41688769991482]
This paper proposes an efficient, low-complexity and anchor-free object detector based on the state-of-the-art YOLO framework.
We develop an enhanced data augmentation method to effectively suppress overfitting during training, and design a hybrid random loss function to improve the detection accuracy of small objects.
Our baseline model can reach the accuracy of 50.6% AP50:95 and 69.8% AP50 in MS 2017 dataset, 26.4% AP50:95 and 44.8% AP50 in VisDrone 2019-DET dataset, and it meets real-time requirements (FPS>=30) on edge-computing device Nvidia
arXiv Detail & Related papers (2023-02-15T06:05:14Z) - Efficient Image Super-Resolution with Feature Interaction Weighted Hybrid Network [101.53907377000445]
Lightweight image super-resolution aims to reconstruct high-resolution images from low-resolution images using low computational costs.
Existing methods result in the loss of middle-layer features due to activation functions.
We propose a Feature Interaction Weighted Hybrid Network (FIWHN) to minimize the impact of intermediate feature loss on reconstruction quality.
arXiv Detail & Related papers (2022-12-29T05:57:29Z) - A lightweight and accurate YOLO-like network for small target detection
in Aerial Imagery [94.78943497436492]
We present YOLO-S, a simple, fast and efficient network for small target detection.
YOLO-S exploits a small feature extractor based on Darknet20, as well as skip connection, via both bypass and concatenation.
YOLO-S has an 87% decrease of parameter size and almost one half FLOPs of YOLOv3, making practical the deployment for low-power industrial applications.
arXiv Detail & Related papers (2022-04-05T16:29:49Z) - Sharpness-aware Quantization for Deep Neural Networks [45.150346855368]
Sharpness-Aware Quantization (SAQ) is a novel method to explore the effect of Sharpness-Aware Minimization (SAM) on model compression.
We show that SAQ improves the generalization performance of the quantized models, yielding the SOTA results in uniform quantization.
arXiv Detail & Related papers (2021-11-24T05:16:41Z) - LF-YOLO: A Lighter and Faster YOLO for Weld Defect Detection of X-ray
Image [7.970559381165446]
We propose a weld defect detection method based on convolution neural network (CNN), namely Lighter and Faster YOLO (LF-YOLO)
To improve the performance of detection network, we propose an efficient feature extraction (EFE) module.
Experimental results show that our weld defect network achieves satisfactory balance between performance and consumption, and reaches 92.9 mAP50 with 61.5 FPS.
arXiv Detail & Related papers (2021-10-28T12:19:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.