論文の概要: Towards a Universal Vibration Analysis Dataset: A Framework for Transfer Learning in Predictive Maintenance and Structural Health Monitoring
- arxiv url: http://arxiv.org/abs/2504.11581v1
- Date: Tue, 15 Apr 2025 19:57:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-17 14:38:28.365042
- Title: Towards a Universal Vibration Analysis Dataset: A Framework for Transfer Learning in Predictive Maintenance and Structural Health Monitoring
- Title(参考訳): ユニバーサル振動解析データセットに向けて:予測的維持と構造的健康モニタリングにおける伝達学習のためのフレームワーク
- Authors: Mert Sehri, Igor Varejão, Zehui Hua, Vitor Bonella, Adriano Santos, Francisco de Assis Boldt, Patrick Dumond, Flavio Miguel Varejão,
- Abstract要約: この研究には、様々な種類の機械からの幅広い振動信号が含まれる。
ビジュアルコンピューティングにおけるImageNetの成功を反映して、このデータセットは産業アプリケーションにおけるインテリジェントシステムの開発を改善する可能性がある。
- 参考スコア(独自算出の注目度): 0.36136619420474764
- License:
- Abstract: ImageNet has become a reputable resource for transfer learning, allowing the development of efficient ML models with reduced training time and data requirements. However, vibration analysis in predictive maintenance, structural health monitoring, and fault diagnosis, lacks a comparable large-scale, annotated dataset to facilitate similar advancements. To address this, a dataset framework is proposed that begins with bearing vibration data as an initial step towards creating a universal dataset for vibration-based spectrogram analysis for all machinery. The initial framework includes a collection of bearing vibration signals from various publicly available datasets. To demonstrate the advantages of this framework, experiments were conducted using a deep learning architecture, showing improvements in model performance when pre-trained on bearing vibration data and fine-tuned on a smaller, domain-specific dataset. These findings highlight the potential to parallel the success of ImageNet in visual computing but for vibration analysis. For future work, this research will include a broader range of vibration signals from multiple types of machinery, emphasizing spectrogram-based representations of the data. Each sample will be labeled according to machinery type, operational status, and the presence or type of faults, ensuring its utility for supervised and unsupervised learning tasks. Additionally, a framework for data preprocessing, feature extraction, and model training specific to vibration data will be developed. This framework will standardize methodologies across the research community, allowing for collaboration and accelerating progress in predictive maintenance, structural health monitoring, and related fields. By mirroring the success of ImageNet in visual computing, this dataset has the potential to improve the development of intelligent systems in industrial applications.
- Abstract(参考訳): ImageNetは、トランスファーラーニングのための信頼できるリソースとなり、トレーニング時間とデータ要求を削減した効率的なMLモデルの開発を可能にした。
しかし, 予測保守, 構造的健康モニタリング, 故障診断における振動解析には, 同様の進歩を促進するための, 大規模で注釈付きデータセットが欠如している。
これを解決するために、振動データを軸受することから始まるデータセットフレームワークが、振動に基づく全機械の分光分析のための普遍的なデータセットを作成するための最初のステップとして提案されている。
最初のフレームワークは、様々な公開データセットからの振動信号の収集を含む。
このフレームワークの利点を実証するため、ディープラーニングアーキテクチャを用いて実験を行い、振動データに事前学習し、より小さなドメイン固有のデータセットで微調整した場合のモデル性能の向上を示した。
これらの知見は、ビジュアルコンピューティングにおけるImageNetの成功と並行して、振動解析の可能性を浮き彫りにしている。
今後の研究には、様々な種類の機械からの広い範囲の振動信号が含まれ、スペクトログラムに基づくデータの表現が強調される。
各サンプルは、機械の種類、運用状況、障害の有無に応じてラベル付けされ、教師なしの学習タスクに有効である。
また、振動データ固有のデータ前処理、特徴抽出、モデルトレーニングのためのフレームワークを開発する。
このフレームワークは、研究コミュニティ全体の方法論を標準化し、予測保守、構造的健康モニタリング、および関連分野における協力と促進を可能にする。
ビジュアルコンピューティングにおけるImageNetの成功を反映して、このデータセットは産業アプリケーションにおけるインテリジェントシステムの開発を改善する可能性がある。
関連論文リスト
- Advancing fNIRS Neuroimaging through Synthetic Data Generation and Machine Learning Applications [0.0]
本研究では,機能的近赤外分光法(fNIRS)の神経イメージングへの統合的アプローチを提案する。
高品質なニューロイメージングデータセットの不足に対処することにより、モンテカルロシミュレーションとパラメトリックヘッドモデルを利用して総合的な合成データセットを生成する。
スケーラブルなデータ生成と処理のためにクラウドベースのインフラストラクチャが確立され、ニューロイメージングデータのアクセシビリティと品質が向上する。
論文 参考訳(メタデータ) (2024-05-18T09:50:19Z) - BEHAVIOR Vision Suite: Customizable Dataset Generation via Simulation [57.40024206484446]
我々は、コンピュータビジョンモデルの体系的評価のために、完全にカスタマイズされた合成データを生成するためのツールと資産のセットであるBEHAVIOR Vision Suite(BVS)を紹介する。
BVSはシーンレベルで多数の調整可能なパラメータをサポートする。
アプリケーションシナリオを3つ紹介する。
論文 参考訳(メタデータ) (2024-05-15T17:57:56Z) - Impact of Noisy Supervision in Foundation Model Learning [91.56591923244943]
本論文は、事前学習データセットにおけるノイズの性質を包括的に理解し分析する最初の研究である。
雑音の悪影響を緩和し、一般化を改善するため、特徴空間に適応するチューニング法(NMTune)を提案する。
論文 参考訳(メタデータ) (2024-03-11T16:22:41Z) - FaultFormer: Pretraining Transformers for Adaptable Bearing Fault Classification [7.136205674624813]
本稿では,トランスモデルに基づく自己教師型事前学習および微調整フレームワークを提案する。
特に、最先端のアキュラシーに到達するための異なるトークン化とデータ拡張戦略について検討する。
このパラダイムでは、異なるベアリング、障害、機械からラベル付けされていないデータに基づいてモデルを事前訓練し、新しいデータスカースアプリケーションに素早くデプロイすることが可能になる。
論文 参考訳(メタデータ) (2023-12-04T22:51:02Z) - Learning dynamics from partial observations with structured neural ODEs [5.757156314867639]
本稿では,ニューラルODEに基づくシステム識別に関する幅広い物理的知見を取り入れたフレキシブルなフレームワークを提案する。
本稿では,ロボット外骨格を用いた数値シミュレーションおよび実験データセットにおける提案手法の性能について述べる。
論文 参考訳(メタデータ) (2022-05-25T07:54:10Z) - Towards Scale Consistent Monocular Visual Odometry by Learning from the
Virtual World [83.36195426897768]
仮想データから絶対スケールを取得するための新しいフレームワークであるVRVOを提案する。
まず、モノクロ実画像とステレオ仮想データの両方を用いて、スケール対応の異種ネットワークをトレーニングする。
結果として生じるスケール一貫性の相違は、直接VOシステムと統合される。
論文 参考訳(メタデータ) (2022-03-11T01:51:54Z) - Addressing Bias in Visualization Recommenders by Identifying Trends in
Training Data: Improving VizML Through a Statistical Analysis of the Plotly
Community Feed [55.41644538483948]
機械学習は、高いスケーラビリティと表現力のために、視覚化レコメンデーションに対する有望なアプローチである。
本研究は,統計的解析によりトレーニングデータの傾向を特定することで,機械学習可視化推薦システムにおけるトレーニングバイアスに対処することを目的とする。
論文 参考訳(メタデータ) (2022-03-09T18:36:46Z) - Flurry: a Fast Framework for Reproducible Multi-layered Provenance Graph
Representation Learning [0.44040106718326594]
Flurryは、サイバー攻撃をシミュレートするエンドツーエンドのデータパイプラインである。
複数のシステムとアプリケーション層におけるこれらの攻撃からのデータをキャプチャし、これらの攻撃からの監査ログをデータプロファイランスグラフに変換し、このデータをディープニューラルネットワークのトレーニングフレームワークに組み込む。
複数のシステム攻撃からのデータを処理し,グラフ分類による異常検出を行うことで,このパイプラインを実証する。
論文 参考訳(メタデータ) (2022-03-05T13:52:11Z) - Self-supervised Audiovisual Representation Learning for Remote Sensing Data [96.23611272637943]
遠隔センシングにおける深層ニューラルネットワークの事前学習のための自己教師型アプローチを提案する。
ジオタグ付きオーディオ記録とリモートセンシングの対応を利用して、これは完全にラベルなしの方法で行われる。
提案手法は,既存のリモートセンシング画像の事前学習方法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-08-02T07:50:50Z) - Unsupervised machine learning via transfer learning and k-means
clustering to classify materials image data [0.0]
本稿では,画像分類のための高性能な教師なし機械学習システムの構築,利用,評価について述べる。
我々は、自然画像のImageNetデータセット上に事前訓練されたVGG16畳み込みニューラルネットワークを用いて、各マイクログラフの特徴表現を抽出する。
このアプローチは、99.4% pm 0.16%$の精度を実現し、結果として得られたモデルは、再トレーニングせずに、新しい画像の分類に使うことができる。
論文 参考訳(メタデータ) (2020-07-16T14:36:04Z) - Meta-learning framework with applications to zero-shot time-series
forecasting [82.61728230984099]
この研究は幅広いメタラーニングフレームワークを使って肯定的な証拠を提供する。
残余接続はメタラーニング適応機構として機能する。
我々は、ソースTSデータセット上でニューラルネットワークをトレーニングし、異なるターゲットTSデータセット上で再トレーニングすることなくデプロイできることを示します。
論文 参考訳(メタデータ) (2020-02-07T16:39:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。