論文の概要: Co-STAR: Collaborative Curriculum Self-Training with Adaptive Regularization for Source-Free Video Domain Adaptation
- arxiv url: http://arxiv.org/abs/2504.11669v1
- Date: Tue, 15 Apr 2025 23:47:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-17 14:39:48.032750
- Title: Co-STAR: Collaborative Curriculum Self-Training with Adaptive Regularization for Source-Free Video Domain Adaptation
- Title(参考訳): Co-STAR:ソースフリービデオ領域適応のための適応正規化による協調的カリキュラム自己学習
- Authors: Amirhossein Dadashzadeh, Parsa Esmati, Majid Mirmehdi,
- Abstract要約: Co-STARはカリキュラム学習と、ソース学習された教師と対照的な視覚言語モデル(CLIP)の協調的自己学習を統合している
カリキュラム学習アプローチでは,教師とCLIPの双方向予測アライメントを測定し,信頼性と不確実性の予測のバランスをとる信頼性に基づく重み関数を用いる。
さらに適応性を向上させるために,適応型カリキュラム正規化を提案し,その信頼性スコアと予測安定性に基づいて,確率的,適応的な方法でサンプルの学習優先度を変更する。
- 参考スコア(独自算出の注目度): 5.122518070721238
- License:
- Abstract: Recent advances in Source-Free Unsupervised Video Domain Adaptation (SFUVDA) leverage vision-language models to enhance pseudo-label generation. However, challenges such as noisy pseudo-labels and over-confident predictions limit their effectiveness in adapting well across domains. We propose Co-STAR, a novel framework that integrates curriculum learning with collaborative self-training between a source-trained teacher and a contrastive vision-language model (CLIP). Our curriculum learning approach employs a reliability-based weight function that measures bidirectional prediction alignment between the teacher and CLIP, balancing between confident and uncertain predictions. This function preserves uncertainty for difficult samples, while prioritizing reliable pseudo-labels when the predictions from both models closely align. To further improve adaptation, we propose Adaptive Curriculum Regularization, which modifies the learning priority of samples in a probabilistic, adaptive manner based on their confidence scores and prediction stability, mitigating overfitting to noisy and over-confident samples. Extensive experiments across multiple video domain adaptation benchmarks demonstrate that Co-STAR consistently outperforms state-of-the-art SFUVDA methods. Code is available at: https://github.com/Plrbear/Co-Star
- Abstract(参考訳): Source-Free Unsupervised Video Domain Adaptation (SFUVDA)の最近の進歩は、視覚言語モデルを活用して擬似ラベル生成を強化している。
しかし、ノイズの多い擬似ラベルや過信予測といった課題は、ドメイン間でうまく適応する上での有効性を制限する。
本稿では,カリキュラム学習と教師の協調的自己学習を統合した新しいフレームワークであるCo-STARを提案する。
カリキュラム学習アプローチでは,教師とCLIPの双方向予測アライメントを測定し,信頼性と不確実性の予測のバランスをとる信頼性に基づく重み関数を用いる。
この関数は、難しいサンプルに対して不確実性を保ちながら、両方のモデルからの予測が密接に一致しているときに、信頼できる疑似ラベルを優先順位付けする。
さらに適応性を向上するため,信頼度と予測安定性に基づいて,確率的かつ適応的な方法でサンプルの学習優先度を調整し,ノイズや過信なサンプルへの過度適合を緩和する適応型カリキュラム正規化を提案する。
複数のビデオ領域適応ベンチマークによる大規模な実験により、Co-STARは最先端のSFUVDA法より一貫して優れていることが示された。
コードは、https://github.com/Plrbear/Co-Starで入手できる。
関連論文リスト
- CALICO: Confident Active Learning with Integrated Calibration [11.978551396144532]
トレーニングプロセス中にサンプル選択に使用される信頼度を自己校正するALフレームワークを提案する。
ラベル付きサンプルが少ないソフトマックス分類器と比較して,分類性能が向上した。
論文 参考訳(メタデータ) (2024-07-02T15:05:19Z) - BaFTA: Backprop-Free Test-Time Adaptation For Zero-Shot Vision-Language Models [20.88680592729709]
本稿では,視覚言語モデルの試験時間適応のためのバックプロパゲーションフリーアルゴリズムBaFTAを提案する。
BaFTAは、投影された埋め込み空間内のオンラインクラスタリングを使用して、クラスセントロイドを直接推定する。
我々は,BaFTAが最先端の試験時間適応手法を効率と効率の両方で一貫して上回っていることを実証した。
論文 参考訳(メタデータ) (2024-06-17T08:16:24Z) - Adaptive Weighted Co-Learning for Cross-Domain Few-Shot Learning [23.615250207134004]
クロスドメイン少ショット学習(CDFSL)は、非常に困難な適応問題を引き起こす。
適応重み付き共学習法(AWCoL)を提案し,CDFSL問題に対処する。
複数のベンチマークデータセットに対して総合的な実験を行い,提案手法が最先端のCDFSL性能を実現することを示す実証実験を行った。
論文 参考訳(メタデータ) (2023-12-06T22:09:52Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
ソースフリードメイン適応(source-free domain adapt, SFDA)は、ソースデータセットにアクセスすることなく、十分にトレーニングされたソースモデルを未学習のターゲットドメインに適応することを目的としている。
既存のSFDAメソッドは、ターゲットのトレーニングセット上で適用されたモデルを評価し、目に見えないが同一の分散テストセットからデータを無視する。
より一般化可能なSFDA法を開発するための整合正則化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-03T07:45:53Z) - Federated Conformal Predictors for Distributed Uncertainty
Quantification [83.50609351513886]
コンフォーマル予測は、機械学習において厳密な不確実性定量化を提供するための一般的なパラダイムとして現れつつある。
本稿では,共形予測を連邦学習環境に拡張する。
本稿では、FL設定に適した部分交換可能性の弱い概念を提案し、それをフェデレート・コンフォーマル予測フレームワークの開発に利用する。
論文 参考訳(メタデータ) (2023-05-27T19:57:27Z) - TWINS: A Fine-Tuning Framework for Improved Transferability of
Adversarial Robustness and Generalization [89.54947228958494]
本稿では,様々な分類タスクにおいて,逆向きに事前訓練されたモデルの微調整に焦点を当てる。
本稿では,TWINS(Two-WIng NormliSation)ファインチューニングフレームワークを提案する。
TWINSは、一般化とロバスト性の両方の観点から、幅広い画像分類データセットに有効であることが示されている。
論文 参考訳(メタデータ) (2023-03-20T14:12:55Z) - Improving Adaptive Conformal Prediction Using Self-Supervised Learning [72.2614468437919]
我々は、既存の予測モデルの上に自己教師付きプレテキストタスクを持つ補助モデルを訓練し、自己教師付きエラーを付加的な特徴として用いて、非整合性スコアを推定する。
合成データと実データの両方を用いて、効率(幅)、欠陥、共形予測間隔の超過といった付加情報の利点を実証的に実証する。
論文 参考訳(メタデータ) (2023-02-23T18:57:14Z) - Predicting Class Distribution Shift for Reliable Domain Adaptive Object
Detection [2.5193191501662144]
Unsupervised Domain Adaptive Object Detection (UDA-OD) は、オープンワールド環境におけるロボットビジョンシステムの信頼性を向上させるために、非ラベルデータを使用する。
自己学習に基づくUDA-ODに対する従来のアプローチは、画像の一般的な外観の変化を克服するのに有効である。
本稿では,自己学習における疑似ラベルの信頼性を向上させるために,クラス分散シフトに明示的に対処するフレームワークを提案する。
論文 参考訳(メタデータ) (2023-02-13T00:46:34Z) - MAPS: A Noise-Robust Progressive Learning Approach for Source-Free
Domain Adaptive Keypoint Detection [76.97324120775475]
クロスドメインキーポイント検出方法は、常に適応中にソースデータにアクセスする必要がある。
本稿では、ターゲット領域に十分に訓練されたソースモデルのみを提供する、ソースフリーなドメイン適応キーポイント検出について考察する。
論文 参考訳(メタデータ) (2023-02-09T12:06:08Z) - Adaptive Consistency Regularization for Semi-Supervised Transfer
Learning [31.66745229673066]
我々は,半教師付き学習と移動学習を共同で検討し,より実践的で競争的なパラダイムへと導いた。
事前学習した重みとラベルなしの目標サンプルの両方の価値をよりよく活用するために、適応整合正則化を導入する。
提案手法は,Pseudo Label,Mean Teacher,MixMatchといった,最先端の半教師付き学習技術より優れた適応整合性正規化を実現する。
論文 参考訳(メタデータ) (2021-03-03T05:46:39Z) - Robust Pre-Training by Adversarial Contrastive Learning [120.33706897927391]
近年の研究では、敵の訓練と統合されると、自己監督型事前訓練が最先端の堅牢性につながることが示されている。
我々は,データ強化と対向的摂動の両面に整合した学習表現により,ロバストネスを意識した自己指導型事前学習を改善する。
論文 参考訳(メタデータ) (2020-10-26T04:44:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。