Benchmarking Mutual Information-based Loss Functions in Federated Learning
- URL: http://arxiv.org/abs/2504.11877v1
- Date: Wed, 16 Apr 2025 08:58:44 GMT
- Title: Benchmarking Mutual Information-based Loss Functions in Federated Learning
- Authors: Sarang S, Harsh D. Chothani, Qilei Li, Ahmed M. Abdelmoniem, Arnab K. Paul,
- Abstract summary: Federated Learning (FL) has attracted considerable interest due to growing privacy regulations.<n>This paper examines the use of Mutual Information (MI)-based loss functions to address these concerns.
- Score: 2.79786165508341
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) has attracted considerable interest due to growing privacy concerns and regulations like the General Data Protection Regulation (GDPR), which stresses the importance of privacy-preserving and fair machine learning approaches. In FL, model training takes place on decentralized data, so as to allow clients to upload a locally trained model and receive a globally aggregated model without exposing sensitive information. However, challenges related to fairness-such as biases, uneven performance among clients, and the "free rider" issue complicates its adoption. In this paper, we examine the use of Mutual Information (MI)-based loss functions to address these concerns. MI has proven to be a powerful method for measuring dependencies between variables and optimizing deep learning models. By leveraging MI to extract essential features and minimize biases, we aim to improve both the fairness and effectiveness of FL systems. Through extensive benchmarking, we assess the impact of MI-based losses in reducing disparities among clients while enhancing the overall performance of FL.
Related papers
- Mitigating Membership Inference Vulnerability in Personalized Federated Learning [6.260747047974035]
Federated Learning (FL) has emerged as a promising paradigm for collaborative model training without the need to share clients' personal data.<n>We introduce IFCA-MIR, an improved version of IFCA that integrates MIA risk assessment into the clustering process.<n>We demonstrate that IFCA-MIR significantly reduces MIA risk while maintaining comparable model accuracy and fairness as the original IFCA.
arXiv Detail & Related papers (2025-03-12T14:10:35Z) - FedMAP: Unlocking Potential in Personalized Federated Learning through Bi-Level MAP Optimization [11.040916982022978]
Federated Learning (FL) enables collaborative training of machine learning models on decentralized data.
Data across clients often differs significantly due to class imbalance, feature distribution skew, sample size imbalance, and other phenomena.
We propose a novel Bayesian PFL framework using bi-level optimization to tackle the data heterogeneity challenges.
arXiv Detail & Related papers (2024-05-29T11:28:06Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - Anti-Matthew FL: Bridging the Performance Gap in Federated Learning to Counteract the Matthew Effect [4.716839088197377]
Federated learning (FL) facilitates model training across heterogeneous and diverse datasets.
In this work, we propose anti-Matthew fairness for the global model at the client level.
We show that our proposed anti-Matthew FL outperforms other state-of-the-art FL algorithms in achieving a high-performance global model.
arXiv Detail & Related papers (2023-09-28T10:51:12Z) - Enabling Quartile-based Estimated-Mean Gradient Aggregation As Baseline
for Federated Image Classifications [5.5099914877576985]
Federated Learning (FL) has revolutionized how we train deep neural networks by enabling decentralized collaboration while safeguarding sensitive data and improving model performance.
This paper introduces an innovative solution named Estimated Mean Aggregation (EMA) that not only addresses these challenges but also provides a fundamental reference point as a $mathsfbaseline$ for advanced aggregation techniques in FL systems.
arXiv Detail & Related papers (2023-09-21T17:17:28Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
Federated learning(FL) has recently attracted increasing attention from academia and industry.
We propose FedDM to build the global training objective from multiple local surrogate functions.
In detail, we construct synthetic sets of data on each client to locally match the loss landscape from original data.
arXiv Detail & Related papers (2022-07-20T04:55:18Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
Federated learning (FL) enables distributed optimization of machine learning models while protecting privacy.
We propose FedReg, an algorithm to accelerate FL with alleviated knowledge forgetting in the local training stage.
Our experiments demonstrate that FedReg not only significantly improves the convergence rate of FL, especially when the neural network architecture is deep.
arXiv Detail & Related papers (2022-03-05T02:31:32Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices)
arXiv Detail & Related papers (2021-11-28T19:03:39Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL):
Performance Analysis and Resource Allocation [119.19061102064497]
We propose a decentralized FL framework by integrating blockchain into FL, namely, blockchain assisted decentralized federated learning (BLADE-FL)
In a round of the proposed BLADE-FL, each client broadcasts its trained model to other clients, competes to generate a block based on the received models, and then aggregates the models from the generated block before its local training of the next round.
We explore the impact of lazy clients on the learning performance of BLADE-FL, and characterize the relationship among the optimal K, the learning parameters, and the proportion of lazy clients.
arXiv Detail & Related papers (2021-01-18T07:19:08Z) - Auto-weighted Robust Federated Learning with Corrupted Data Sources [7.475348174281237]
Federated learning provides a communication-efficient and privacy-preserving training process.
Standard federated learning techniques that naively minimize an average loss function are vulnerable to data corruptions.
We propose Auto-weighted Robust Federated Learning (arfl) to provide robustness against corrupted data sources.
arXiv Detail & Related papers (2021-01-14T21:54:55Z) - Toward Understanding the Influence of Individual Clients in Federated
Learning [52.07734799278535]
Federated learning allows clients to jointly train a global model without sending their private data to a central server.
We defined a new notion called em-Influence, quantify this influence over parameters, and proposed an effective efficient model to estimate this metric.
arXiv Detail & Related papers (2020-12-20T14:34:36Z) - Addressing Class Imbalance in Federated Learning [10.970632986559547]
Federated learning (FL) is a promising approach for training decentralized data located on local client devices.
We propose a monitoring scheme that can infer the composition of training data for each FL round, and design a new loss function -- textbfRatio Loss to mitigate the impact.
arXiv Detail & Related papers (2020-08-14T07:28:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.