Rethinking LLM-Based Recommendations: A Query Generation-Based, Training-Free Approach
- URL: http://arxiv.org/abs/2504.11889v1
- Date: Wed, 16 Apr 2025 09:17:45 GMT
- Title: Rethinking LLM-Based Recommendations: A Query Generation-Based, Training-Free Approach
- Authors: Donghee Han, Hwanjun Song, Mun Yong Yi,
- Abstract summary: We propose a Query-to-Recommendation approach that generates personalized queries for retrieving relevant items from the entire candidate pool.<n>This method can be integrated into an ID-based recommendation system without additional training.<n>Experiments on three datasets show up to 57 percent improvement, with an average gain of 31 percent.
- Score: 16.482830042945775
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Existing large language model LLM-based recommendation methods face several challenges, including inefficiency in handling large candidate pools, sensitivity to item order within prompts ("lost in the middle" phenomenon) poor scalability, and unrealistic evaluation due to random negative sampling. To address these issues, we propose a Query-to-Recommendation approach that leverages LLMs to generate personalized queries for retrieving relevant items from the entire candidate pool, eliminating the need for candidate pre-selection. This method can be integrated into an ID-based recommendation system without additional training, enhances recommendation performance and diversity through LLMs' world knowledge, and performs well even for less popular item groups. Experiments on three datasets show up to 57 percent improvement, with an average gain of 31 percent, demonstrating strong zero-shot performance and further gains when ensembled with existing models.
Related papers
- Self-Calibrated Listwise Reranking with Large Language Models [137.6557607279876]
Large language models (LLMs) have been employed in reranking tasks through a sequence-to-sequence approach.
This reranking paradigm requires a sliding window strategy to iteratively handle larger candidate sets.
We propose a novel self-calibrated listwise reranking method, which aims to leverage LLMs to produce global relevance scores for ranking.
arXiv Detail & Related papers (2024-11-07T10:31:31Z) - Enhancing ID-based Recommendation with Large Language Models [47.14302346325941]
We introduce a pioneering approach called "LLM for ID-based Recommendation" (LLM4IDRec)
This innovative approach integrates the capabilities of LLMs while exclusively relying on ID data, thus diverging from the previous reliance on textual data.
We evaluate the effectiveness of our LLM4IDRec approach using three widely-used datasets.
arXiv Detail & Related papers (2024-11-04T12:43:12Z) - STAR: A Simple Training-free Approach for Recommendations using Large Language Models [36.18841135511487]
Current state-of-the-art methods rely on fine-tuning large language models (LLMs) to achieve optimal results.<n>We propose a framework that utilizes LLMs and can be applied to various recommendation tasks without the need for fine-tuning.<n>Our method achieves Hits@10 performance of +23.8% on Beauty, +37.5% on Toys & Games, and -1.8% on Sports & Outdoors.
arXiv Detail & Related papers (2024-10-21T19:34:40Z) - On Speeding Up Language Model Evaluation [48.51924035873411]
We propose an $textitadaptive$ approach to explore this space.<n>We lean on multi-armed bandits to sequentially identify the next (method, validation sample)-pair to evaluate.<n>We show that it can identify the top-performing method using only 5-15% of the typical resources.
arXiv Detail & Related papers (2024-07-08T17:48:42Z) - Improve Temporal Awareness of LLMs for Sequential Recommendation [61.723928508200196]
Large language models (LLMs) have demonstrated impressive zero-shot abilities in solving a wide range of general-purpose tasks.
LLMs fall short in recognizing and utilizing temporal information, rendering poor performance in tasks that require an understanding of sequential data.
We propose three prompting strategies to exploit temporal information within historical interactions for LLM-based sequential recommendation.
arXiv Detail & Related papers (2024-05-05T00:21:26Z) - Efficient and Responsible Adaptation of Large Language Models for Robust Top-k Recommendations [11.004673022505566]
Long user queries from millions of users can degrade the performance of large language models for recommendation.
We propose a hybrid task allocation framework that utilizes the capabilities of both large language models and traditional recommendation systems.
Our results on three real-world datasets show a significant reduction in weak users and improved robustness of RSs to sub-populations.
arXiv Detail & Related papers (2024-05-01T19:11:47Z) - How to Train Data-Efficient LLMs [56.41105687693619]
We study data-efficient approaches for pre-training language models (LLMs)
We find that Ask-LLM and Density sampling are the best methods in their respective categories.
In our comparison of 19 samplers, involving hundreds of evaluation tasks and pre-training runs, we find that Ask-LLM and Density are the best methods in their respective categories.
arXiv Detail & Related papers (2024-02-15T02:27:57Z) - Query-Dependent Prompt Evaluation and Optimization with Offline Inverse
RL [62.824464372594576]
We aim to enhance arithmetic reasoning ability of Large Language Models (LLMs) through zero-shot prompt optimization.
We identify a previously overlooked objective of query dependency in such optimization.
We introduce Prompt-OIRL, which harnesses offline inverse reinforcement learning to draw insights from offline prompting demonstration data.
arXiv Detail & Related papers (2023-09-13T01:12:52Z) - MLLM-DataEngine: An Iterative Refinement Approach for MLLM [62.30753425449056]
We propose a novel closed-loop system that bridges data generation, model training, and evaluation.
Within each loop, the MLLM-DataEngine first analyze the weakness of the model based on the evaluation results.
For targeting, we propose an Adaptive Bad-case Sampling module, which adjusts the ratio of different types of data.
For quality, we resort to GPT-4 to generate high-quality data with each given data type.
arXiv Detail & Related papers (2023-08-25T01:41:04Z) - ReLLa: Retrieval-enhanced Large Language Models for Lifelong Sequential Behavior Comprehension in Recommendation [43.270424225285105]
We focus on adapting and empowering a pure large language model for zero-shot and few-shot recommendation tasks.
We propose Retrieval-enhanced Large Language models (ReLLa) for recommendation tasks in both zero-shot and few-shot settings.
arXiv Detail & Related papers (2023-08-22T02:25:04Z) - Large Language Models are Effective Text Rankers with Pairwise Ranking Prompting [65.00288634420812]
Pairwise Ranking Prompting (PRP) is a technique to significantly reduce the burden on Large Language Models (LLMs)
Our results are the first in the literature to achieve state-of-the-art ranking performance on standard benchmarks using moderate-sized open-sourced LLMs.
arXiv Detail & Related papers (2023-06-30T11:32:25Z) - PALR: Personalization Aware LLMs for Recommendation [7.407353565043918]
PALR aims to combine user history behaviors (such as clicks, purchases, ratings, etc.) with large language models (LLMs) to generate user preferred items.
Our solution outperforms state-of-the-art models on various sequential recommendation tasks.
arXiv Detail & Related papers (2023-05-12T17:21:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.