Efficient and Responsible Adaptation of Large Language Models for Robust Top-k Recommendations
- URL: http://arxiv.org/abs/2405.00824v1
- Date: Wed, 01 May 2024 19:11:47 GMT
- Title: Efficient and Responsible Adaptation of Large Language Models for Robust Top-k Recommendations
- Authors: Kirandeep Kaur, Chirag Shah,
- Abstract summary: Long user queries from millions of users can degrade the performance of large language models for recommendation.
We propose a hybrid task allocation framework that utilizes the capabilities of both large language models and traditional recommendation systems.
Our results on three real-world datasets show a significant reduction in weak users and improved robustness of RSs to sub-populations.
- Score: 11.004673022505566
- License:
- Abstract: Conventional recommendation systems (RSs) are typically optimized to enhance performance metrics uniformly across all training samples. This makes it hard for data-driven RSs to cater to a diverse set of users due to the varying properties of these users. The performance disparity among various populations can harm the model's robustness with respect to sub-populations. While recent works have shown promising results in adapting large language models (LLMs) for recommendation to address hard samples, long user queries from millions of users can degrade the performance of LLMs and elevate costs, processing times and inference latency. This challenges the practical applicability of LLMs for recommendations. To address this, we propose a hybrid task allocation framework that utilizes the capabilities of both LLMs and traditional RSs. By adopting a two-phase approach to improve robustness to sub-populations, we promote a strategic assignment of tasks for efficient and responsible adaptation of LLMs. Our strategy works by first identifying the weak and inactive users that receive a suboptimal ranking performance by RSs. Next, we use an in-context learning approach for such users, wherein each user interaction history is contextualized as a distinct ranking task and given to an LLM. We test our hybrid framework by incorporating various recommendation algorithms -- collaborative filtering and learning-to-rank recommendation models -- and two LLMs -- both open and close-sourced. Our results on three real-world datasets show a significant reduction in weak users and improved robustness of RSs to sub-populations $(\approx12\%)$ and overall performance without disproportionately escalating costs.
Related papers
- LLM-Powered Preference Elicitation in Combinatorial Assignment [17.367432304040662]
We study the potential of large language models (LLMs) as proxies for humans to simplify preference elicitation (PE) in assignment.
We propose a framework for LLM proxies that can work in tandem with SOTA ML-powered preference elicitation schemes.
We experimentally evaluate the efficiency of LLM proxies against human queries in the well-studied course allocation domain.
arXiv Detail & Related papers (2025-02-14T17:12:20Z) - Efficient and Responsible Adaptation of Large Language Models for Robust and Equitable Top-k Recommendations [12.814937243361054]
We propose a hybrid task allocation framework designed to promote social good by equitably serving all user groups.
Our results on three real-world datasets show a significant reduction in weak users and improved robustness to subpopulations without disproportionately escalating costs.
arXiv Detail & Related papers (2025-01-08T18:08:48Z) - Federated Fine-Tuning of LLMs: Framework Comparison and Research Directions [59.5243730853157]
Federated learning (FL) provides a privacy-preserving solution for fine-tuning pre-trained large language models (LLMs) using distributed private datasets.
This article conducts a comparative analysis of three advanced federated LLM (FedLLM) frameworks that integrate knowledge distillation (KD) and split learning (SL) to mitigate these issues.
arXiv Detail & Related papers (2025-01-08T11:37:06Z) - Optima: Optimizing Effectiveness and Efficiency for LLM-Based Multi-Agent System [75.25394449773052]
Large Language Model (LLM) based multi-agent systems (MAS) show remarkable potential in collaborative problem-solving.
Yet they still face critical challenges: low communication efficiency, poor scalability, and a lack of effective parameter-updating optimization methods.
We present Optima, a novel framework that addresses these issues by significantly enhancing both communication efficiency and task effectiveness.
arXiv Detail & Related papers (2024-10-10T17:00:06Z) - LLMEmb: Large Language Model Can Be a Good Embedding Generator for Sequential Recommendation [57.49045064294086]
Large Language Model (LLM) has the ability to capture semantic relationships between items, independent of their popularity.
We introduce LLMEmb, a novel method leveraging LLM to generate item embeddings that enhance Sequential Recommender Systems (SRS) performance.
arXiv Detail & Related papers (2024-09-30T03:59:06Z) - Beyond Inter-Item Relations: Dynamic Adaption for Enhancing LLM-Based Sequential Recommendation [83.87767101732351]
Sequential recommender systems (SRS) predict the next items that users may prefer based on user historical interaction sequences.
Inspired by the rise of large language models (LLMs) in various AI applications, there is a surge of work on LLM-based SRS.
We propose DARec, a sequential recommendation model built on top of coarse-grained adaption for capturing inter-item relations.
arXiv Detail & Related papers (2024-08-14T10:03:40Z) - Lifelong Personalized Low-Rank Adaptation of Large Language Models for Recommendation [50.837277466987345]
We focus on the field of large language models (LLMs) for recommendation.
We propose RecLoRA, which incorporates a Personalized LoRA module that maintains independent LoRAs for different users.
We also design a Few2Many Learning Strategy, using a conventional recommendation model as a lens to magnify small training spaces to full spaces.
arXiv Detail & Related papers (2024-08-07T04:20:28Z) - A Thorough Performance Benchmarking on Lightweight Embedding-based Recommender Systems [67.52782366565658]
State-of-the-art recommender systems (RSs) depend on categorical features, which ecoded by embedding vectors, resulting in excessively large embedding tables.
Despite the prosperity of lightweight embedding-based RSs, a wide diversity is seen in evaluation protocols.
This study investigates various LERS' performance, efficiency, and cross-task transferability via a thorough benchmarking process.
arXiv Detail & Related papers (2024-06-25T07:45:00Z) - LLM4MSR: An LLM-Enhanced Paradigm for Multi-Scenario Recommendation [45.31960122494715]
We propose an efficient interpretable large language model (LLM)-enhanced paradigm LLM4MSR.
Specifically, we first leverage LLM to uncover multi-level knowledge including scenario correlations and users' cross-scenario interests.
Our experiments on KuaiSAR-small, KuaiSAR, and Amazon datasets validate two significant advantages of LLM4MSR.
arXiv Detail & Related papers (2024-06-18T11:59:36Z) - A Practice-Friendly LLM-Enhanced Paradigm with Preference Parsing for Sequential Recommendation [15.153844486572932]
This paper proposes a practice-friendly LLM-enhanced paradigm with preference parsing (P2Rec) for sequential recommender systems (SRS)
Specifically, in the information reconstruction stage, we design a new user-level SFT task for collaborative information injection with the assistance of a pre-trained SRS model.
Our goal is to let LLM learn to reconstruct a corresponding prior preference distribution from each user's interaction sequence.
arXiv Detail & Related papers (2024-06-01T07:18:56Z) - Value Augmented Sampling for Language Model Alignment and Personalization [39.070662999014836]
We present a new framework for reward optimization, Value Augmented Sampling (VAS)
VAS solves for the optimal reward-maximizing policy without co-training the policy and the value function.
Our algorithm unlocks the new capability of composing several rewards and controlling the extent of each one during deployment time.
arXiv Detail & Related papers (2024-05-10T17:59:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.